There is a small chance that the internal allocator is locked
during fork and then the new process is created with locked
internal allocator and any attempts to use it will deadlock.
For example, if detected a suppressed race in the parent during fork
and then another suppressed race after the fork.
This becomes much more likely with the new tsan runtime
as it uses the internal allocator for more things.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D114531
They need to have same AddressSpaceView and MapUnmapCallback.
Reviewers: eugenis
Subscribers: kubamracek, #sanitizers, llvm-commits
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D61168
llvm-svn: 359719
Originally this code as added for 64-bit platform and was never changed.
Add static_assert to make sure that we have correct map on all platforms.
llvm-svn: 359269
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
This is a follow up patch to r346956 for the `SizeClassAllocator32`
allocator.
This patch makes `AddressSpaceView` a template parameter both to the
`ByteMap` implementations (but makes `LocalAddressSpaceView` the
default), some `AP32` implementations and is used in `SizeClassAllocator32`.
The actual changes to `ByteMap` implementations and
`SizeClassAllocator32` are very simple. However the patch is large
because it requires changing all the `AP32` definitions, and users of
those definitions.
For ASan and LSan we make `AP32` and `ByteMap` templateds type that take
a single `AddressSpaceView` argument. This has been done because we will
instantiate the allocator with a type that isn't `LocalAddressSpaceView`
in the future patches. For the allocators used in the other sanitizers
(i.e. HWAsan, MSan, Scudo, and TSan) use of `LocalAddressSpaceView` is
hard coded because we do not intend to instantiate the allocators with
any other type.
In the cases where untemplated types have become templated on a single
`AddressSpaceView` parameter (e.g. `PrimaryAllocator`) their name has
been changed to have a `ASVT` suffix (Address Space View Type) to
indicate they are templated. The only exception to this are the `AP32`
types due to the desire to keep the type name as short as possible.
In order to check that template is instantiated in the correct a way a
`static_assert(...)` has been added that checks that the
`AddressSpaceView` type used by `Params::ByteMap::AddressSpaceView` matches
the `Params::AddressSpaceView`. This uses the new `sanitizer_type_traits.h`
header.
rdar://problem/45284065
Reviewers: kcc, dvyukov, vitalybuka, cryptoad, eugenis, kubamracek, george.karpenkov
Subscribers: mgorny, llvm-commits, #sanitizers
Differential Revision: https://reviews.llvm.org/D54904
llvm-svn: 349138
Summary:
Going through the dead code findings, the code removed in this CL appears to be
pretty straightforward to remove, and seems to be some leftover from previous
refactors.
Reviewers: alekseyshl, eugenis
Reviewed By: alekseyshl
Subscribers: kubamracek, delcypher, #sanitizers, llvm-commits
Differential Revision: https://reviews.llvm.org/D45704
llvm-svn: 330190
Summary:
There are applications out there which allocate more than 1 << 18 large chunks
of memory (those handled by LargeMmapAllocator, aka secondary allocator).
For 64 bits, secondary allocator stores allocated chunks in a growing on
demand region of memory, growing in blocks of 128K, up to 1 << 20 chunks total.
Sanitizer internal allocator's secondary uses fixed size array storing up
to 1 << 15 chunks (down to 256K from 2Mb of memory used for that array).
Nothing is changed for 32 bits, chunks are still stored in the fixed size
array (up to 1 << 15 chunks).
Reviewers: eugenis
Subscribers: kubamracek, delcypher, #sanitizers, llvm-commits
Differential Revision: https://reviews.llvm.org/D43693
llvm-svn: 326007
Summary:
Make common allocator agnostic to failure handling modes and move the
decision up to the particular sanitizer's allocator, where the context
is available (call stack, parameters, return nullptr/crash mode etc.)
It simplifies the common allocator and allows the particular sanitizer's
allocator to generate more specific and detailed error reports (which
will be implemented later).
The behavior is largely the same, except one case, the violation of the
common allocator's check for "size + alignment" overflow is now reportied
as OOM instead of "bad request". It feels like a worthy tradeoff and
"size + alignment" is huge in this case anyway (thus, can be interpreted
as not enough memory to satisfy the request). There's also a Report()
statement added there.
Reviewers: eugenis
Subscribers: kubamracek, llvm-commits, #sanitizers
Differential Revision: https://reviews.llvm.org/D42198
llvm-svn: 322784
Summary:
Move cached allocator_may_return_null flag to sanitizer_allocator.cc and
provide API to consolidate and unify the behavior of all specific allocators.
Make all sanitizers using CombinedAllocator to follow
AllocatorReturnNullOrDieOnOOM() rules to behave the same way when OOM
happens.
When OOM happens, turn allocator_out_of_memory flag on regardless of
allocator_may_return_null flag value (it used to not to be set when
allocator_may_return_null == true).
release_to_os_interval_ms and rss_limit_exceeded will likely be moved to
sanitizer_allocator.cc too (later).
Reviewers: eugenis
Subscribers: srhines, kubamracek, llvm-commits
Differential Revision: https://reviews.llvm.org/D34310
llvm-svn: 305858
Summary:
With rL279771, SizeClassAllocator64 was changed to accept only one template
instead of 5, for the following reasons: "First, this will make the mangled
names shorter. Second, this will make adding more parameters simpler". This
patch mirrors that work for SizeClassAllocator32.
This is in preparation for introducing the randomization of chunks in the
32-bit SizeClassAllocator in a later patch.
Reviewers: kcc, alekseyshl, dvyukov
Reviewed By: alekseyshl
Subscribers: llvm-commits, kubamracek
Differential Revision: https://reviews.llvm.org/D33141
llvm-svn: 303071
The definitions in sanitizer_common may conflict with definitions from system headers because:
The runtime includes the system headers after the project headers (as per LLVM coding guidelines).
lib/sanitizer_common/sanitizer_internal_defs.h pollutes the namespace of everything defined after it, which is all/most of the sanitizer .h and .cc files and the included system headers with: using namespace __sanitizer; // NOLINT
This patch solves the problem by introducing the namespace only within the sanitizer namespaces as proposed by Dmitry.
Differential Revision: https://reviews.llvm.org/D21947
llvm-svn: 281657
This patch replaces all uses of __libc_malloc and friends with the internal allocator.
It seems that the only reason why we have calls to __libc_malloc in the first place was the lack of the internal allocator at the time. Using the internal allocator will also make sure that the system allocator is never used (this is the same behavior as ASan), and we don’t have to worry about working with unknown pointers coming from the system allocator.
Differential Revision: http://reviews.llvm.org/D21025
llvm-svn: 271916
The new parser is a lot stricter about syntax, reports unrecognized
flags, and will make it easier to implemented some of the planned features.
llvm-svn: 226169
I don't remember that crash on mmap in internal allocator
ever yielded anything useful, only crashes in rare wierd untested situations.
One of the reasons for crash was to catch if tsan starts allocating
clocks using mmap. Tsan does not allocate clocks using internal_alloc anymore.
Solve it once and for all by allowing mmaps.
llvm-svn: 217929
16M regions can waste almost 1G for nothing.
Since region size is used only during initial heap growth,
it's unclear why we even need such huge regions.
llvm-svn: 214027
Summary:
Implement TwoLevelByteMap and use it for the internal allocator on 64-bit.
This reduces bss on 64-bit by ~8Mb because we don't use FlatByteMap on 64-bits any more.
Dmitry, please check my understanding of atomics.
Reviewers: dvyukov
Reviewed By: dvyukov
CC: samsonov, llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2259
llvm-svn: 195637