undefined behaviour, and move the diagnostic for '' from an Error into
an ExtWarn in this group. This is important for some users of the preprocessor,
and is necessary for gcc compatibility.
llvm-svn: 159335
* Removed docs for Lexer::makeFileCharRange from Lexer.cpp, as they're in
the header file;
* Reworked the documentation for SkipBlockComment so that it doesn't confuse
Doxygen's comment parsing;
* Added another summary with \brief markup.
llvm-svn: 158618
1. Teach Lexer that pragma lexers are like macro expansions at EOF.
2. Treat pragmas like #define/#undef when printing.
3. If we just printed a directive, add a newline before any more tokens.
(4. Miscellaneous cleanup in PrintPreprocessedOutput.cpp)
PR10594 and <rdar://problem/11562490> (two separate related problems)
llvm-svn: 158571
modes. For languages other than C99/C11, this isn't quite a conforming
extension, and for C++11, it breaks some reasonable code containing
user-defined literals.
In languages which don't officially have hexfloats, pare back this extension
to only apply in cases where the token starts 0x and does not contain an
underscore. The extension is still not quite conforming, but it's a lot closer
now.
llvm-svn: 158487
This was a problem for people who write 'return(result);'
Also fix ARCMT's corresponding code, though there's no test case for this
because implicit casts like this are rejected by the migrator for being
ambiguous, and explicit casts have no problem.
<rdar://problem/11577346>
llvm-svn: 158130
starting with an underscore is ill-formed.
Since this rule rejects programs that were using <inttypes.h>'s macros, recover
from this error by treating the ud-suffix as a separate preprocessing-token,
with a DefaultError ExtWarn. The approach of treating such cases as two tokens
is under discussion for standardization, but is in any case a conforming
extension and allows existing codebases to keep building while the committee
makes up its mind.
Reword the warning on the definition of literal operators not starting with
underscores (which are, strangely, legal) to more explicitly state that such
operators can't be called by literals. Remove the special-case diagnostic for
hexfloats, since it was both triggering in the wrong cases and incorrect.
llvm-svn: 152287
grammar requires a string-literal and not a user-defined-string-literal. The
two constructs are still represented by the same TokenKind, in order to prevent
a combinatorial explosion of different kinds of token. A flag on Token tracks
whether a ud-suffix is present, in order to prevent clients from needing to look
at the token's spelling.
llvm-svn: 152098
re-computed rather than the variables be re-used just after the assert.
Just use the variables since we have them already. Fixes an unused
variable warning.
Also fix an 80-column violation.
llvm-svn: 148212
This also adds a -Wc++98-compat-pedantic for warning on constructs which would
be diagnosed by -std=c++98 -pedantic (that is, it warns even on C++11 features
which we enable by default, with no warning, in C++98 mode).
llvm-svn: 142034
Previously we would cut off the source file buffer at the code-completion
point; this impeded code-completion inside C++ inline methods and,
recently, with buffering ObjC methods.
Have the code-completion inserted into the source buffer so that it can
be buffered along with a method body. When we actually hit the code-completion
point the cut-off lexing or parsing.
Fixes rdar://10056932&8319466
llvm-svn: 139086
The function was only counting lines that included tokens and not empty lines,
but MaxLines (mainly initiated to the line where the code-completion point resides)
is a count of overall lines (even empty ones).
llvm-svn: 139085
loads the named module. The syntax itself is intentionally hideous and
will be replaced at some later point with something more
palatable. For now, we're focusing on the semantics:
- Module imports are handled first by the preprocessor (to get macro
definitions) and then the same tokens are also handled by the parser
(to get declarations). If both happen (as in normal compilation),
the second one is redundant, because we currently have no way to
hide macros or declarations when loading a module. Chris gets credit
for this mad-but-workable scheme.
- The Preprocessor now holds on to a reference to a module loader,
which is responsible for loading named modules. CompilerInstance is
the only important module loader: it now knows how to create and
wire up an AST reader on demand to actually perform the module load.
- We search for modules in the include path, using the module name
with the suffix ".pcm" (precompiled module) for the file name. This
is a temporary hack; we hope to improve the situation in the
future.
llvm-svn: 138679
etc. With this I think essentially all of the SourceManager APIs are
converted. Comments and random other bits of cleanup should be all thats
left.
llvm-svn: 136057
and various other 'expansion' based terms. I've tried to reformat where
appropriate and catch as many references in comments but I'm going to do
several more passes. Also I've tried to expand parameter names to be
more clear where appropriate.
llvm-svn: 136056
FullSourceLoc::getInstantiationLoc to ...::getExpansionLoc. This is part
of the API and documentation update from 'instantiation' as the term for
macros to 'expansion'.
llvm-svn: 135914
source locations from source locations loaded from an AST/PCH file.
Previously, loading an AST/PCH file involved carefully pre-allocating
space at the beginning of the source manager for the source locations
and FileIDs that correspond to the prefix, and then appending the
source locations/FileIDs used for parsing the remaining translation
unit. This design forced us into loading PCH files early, as a prefix,
whic has become a rather significant limitation.
This patch splits the SourceManager space into two parts: for source
location "addresses", the lower values (growing upward) are used to
describe parsed code, while upper values (growing downward) are used
for source locations loaded from AST/PCH files. Similarly, positive
FileIDs are used to describe parsed code while negative FileIDs are
used to file/macro locations loaded from AST/PCH files. As a result,
we can load PCH/AST files even during parsing, making various
improvemnts in the future possible, e.g., teaching #include <foo.h> to
look for and load <foo.h.gch> if it happens to be already available.
This patch was originally written by Sebastian Redl, then brought
forward to the modern age by Jonathan Turner, and finally
polished/finished by me to be committed.
llvm-svn: 135484
'expand'. Also update the public API it provides to the new term, and
propagate that update to the various clients.
No functionality changed.
llvm-svn: 135138
When a macro instantiation occurs, reserve a SLocEntry chunk with length the
full length of the macro definition source. Set the spelling location of this chunk
to point to the start of the macro definition and any tokens that are lexed directly
from the macro definition will get a location from this chunk with the appropriate offset.
For any tokens that come from argument expansion, '##' paste operator, etc. have their
instantiation location point at the appropriate place in the instantiated macro definition
(the argument identifier and the '##' token respectively).
This improves macro instantiation diagnostics:
Before:
t.c:5:9: error: invalid operands to binary expression ('struct S' and 'int')
int y = M(/);
^~~~
t.c:5:11: note: instantiated from:
int y = M(/);
^
After:
t.c:5:9: error: invalid operands to binary expression ('struct S' and 'int')
int y = M(/);
^~~~
t.c:3:20: note: instantiated from:
\#define M(op) (foo op 3);
~~~ ^ ~
t.c:5:11: note: instantiated from:
int y = M(/);
^
The memory savings for a candidate boost library that abuses the preprocessor are:
- 32% less SLocEntries (37M -> 25M)
- 30% reduction in PCH file size (900M -> 635M)
- 50% reduction in memory usage for the SLocEntry table (1.6G -> 800M)
llvm-svn: 134587
The previous name was inaccurate as this token in fact appears at
the end of every preprocessing directive, not just macro definitions.
No functionality change, except for a diagnostic tweak.
llvm-svn: 126631
The extra data stored on user-defined literal Tokens is stored in extra
allocated memory, which is managed by the PreprocessorLexer because there isn't
a better place to put it that makes sure it gets deallocated, but only after
it's used up. My testing has shown no significant slowdown as a result, but
independent testing would be appreciated.
llvm-svn: 112458
reparsing an ASTUnit. When saving a preamble, create a buffer larger
than the actual file we're working with but fill everything from the
end of the preamble to the end of the file with spaces (so the lexer
will quickly skip them). When we load the file, create a buffer of the
same size, filling it with the file and then spaces. Then, instruct
the lexer to start lexing after the preamble, therefore continuing the
parse from the spot where the preamble left off.
It's now possible to perform a simple preamble build + parse (+
reparse) with ASTUnit. However, one has to disable a bunch of checking
in the PCH reader to do so. That part isn't committed; it will likely
be handled with some other kind of flag (e.g., -fno-validate-pch).
As part of this, fix some issues with null termination of the memory
buffers created for the preamble; we were trying to explicitly
NULL-terminate them, even though they were also getting implicitly
NULL terminated, leading to excess warnings about NULL characters in
source files.
llvm-svn: 109445
is present.
Rather than using clang_getCursorExtent(), which requires
us to lex the token at the ending position to determine its
length. Then, we'd be comparing [a, b) source ranges that cover the
characters in the range rather than the normal behavior for Clang's
source ranges, which covers the tokens in the range. However, relexing
causes us to read the source file (which may come from a precompiled
header), which is rather unfortunate and affects performance.
In the new scheme, we only use Clang-style source ranges that cover
the tokens in the range. At the entry points where this matters
(clang_annotateTokens, clang_getCursor), we make sure to move source
locations to the start of the token.
Addresses most of <rdar://problem/8049381>.
llvm-svn: 109134
which is the part of the file that contains all of the initial
comments, includes, and preprocessor directives that occur before any
of the actual code. Added a new -print-preamble cc1 action that is
only used for testing.
llvm-svn: 108913