Canonicalizing 'x [+-] (-Constant * y)' is not a win if we don't *know*
we will open up CSE opportunities.
If the multiply was 'nsw', then negating 'y' requires us to clear the
'nsw' flag. If this is actually worth pursuing, it is probably more
appropriate to do so in GVN or EarlyCSE.
This fixes PR23675.
llvm-svn: 238397
See r230786 and r230794 for similar changes to gep and load
respectively.
Call is a bit different because it often doesn't have a single explicit
type - usually the type is deduced from the arguments, and just the
return type is explicit. In those cases there's no need to change the
IR.
When that's not the case, the IR usually contains the pointer type of
the first operand - but since typed pointers are going away, that
representation is insufficient so I'm just stripping the "pointerness"
of the explicit type away.
This does make the IR a bit weird - it /sort of/ reads like the type of
the first operand: "call void () %x(" but %x is actually of type "void
()*" and will eventually be just of type "ptr". But this seems not too
bad and I don't think it would benefit from repeating the type
("void (), void () * %x(" and then eventually "void (), ptr %x(") as has
been done with gep and load.
This also has a side benefit: since the explicit type is no longer a
pointer, there's no ambiguity between an explicit type and a function
that returns a function pointer. Previously this case needed an explicit
type (eg: a function returning a void() function was written as
"call void () () * @x(" rather than "call void () * @x(" because of the
ambiguity between a function returning a pointer to a void() function
and a function returning void).
No ambiguity means even function pointer return types can just be
written alone, without writing the whole function's type.
This leaves /only/ the varargs case where the explicit type is required.
Given the special type syntax in call instructions, the regex-fu used
for migration was a bit more involved in its own unique way (as every
one of these is) so here it is. Use it in conjunction with the apply.sh
script and associated find/xargs commands I've provided in rr230786 to
migrate your out of tree tests. Do let me know if any of this doesn't
cover your cases & we can iterate on a more general script/regexes to
help others with out of tree tests.
About 9 test cases couldn't be automatically migrated - half of those
were functions returning function pointers, where I just had to manually
delete the function argument types now that we didn't need an explicit
function type there. The other half were typedefs of function types used
in calls - just had to manually drop the * from those.
import fileinput
import sys
import re
pat = re.compile(r'((?:=|:|^|\s)call\s(?:[^@]*?))(\s*$|\s*(?:(?:\[\[[a-zA-Z0-9_]+\]\]|[@%](?:(")?[\\\?@a-zA-Z0-9_.]*?(?(3)"|)|{{.*}}))(?:\(|$)|undef|inttoptr|bitcast|null|asm).*$)')
addrspace_end = re.compile(r"addrspace\(\d+\)\s*\*$")
func_end = re.compile("(?:void.*|\)\s*)\*$")
def conv(match, line):
if not match or re.search(addrspace_end, match.group(1)) or not re.search(func_end, match.group(1)):
return line
return line[:match.start()] + match.group(1)[:match.group(1).rfind('*')].rstrip() + match.group(2) + line[match.end():]
for line in sys.stdin:
sys.stdout.write(conv(re.search(pat, line), line))
llvm-svn: 235145
This reapplies the patch previously committed at revision 232190. This was
reverted at revision 232196 as it caused test failures in tests that did not
expect operands to be commuted. I have made the tests more resilient to
reassociation in revision 232206.
llvm-svn: 232209
This patch adds initial support for vector instructions to the reassociation
pass. It enables most parts of the pass to work with vectors but to keep the
size of the patch small, optimization of Xor trees, canonicalization of
negative constants and converting shifts to muls, etc., have been left out.
This will be handled in later patches.
The patch is based on an initial patch by Chad Rosier.
Differential Revision: http://reviews.llvm.org/D7566
llvm-svn: 232190
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
llvm-svn: 230786
Summary:
When trying to canonicalize negative constants out of
multiplication expressions, we need to check that the
constant is not INT_MIN which cannot be negated.
Reviewers: mcrosier
Reviewed By: mcrosier
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7286
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 228872
This reverts commit r222142. This is causing/exposing an execution-time regression
in spec2006/gcc and coremark on AArch64/A57/Ofast.
Conflicts:
test/Transforms/Reassociate/optional-flags.ll
llvm-svn: 222398
Prior to this commit fmul and fadd binary operators were being canonicalized for
both scalar and vector versions. We now canonicalize add, mul, and, or, and xor
vector instructions.
llvm-svn: 222006
This is a reapplication of r221171, but we only perform the transformation
on expressions which include a multiplication. We do not transform rem/div
operations as this doesn't appear to be safe in all cases.
llvm-svn: 221721
instructions. Inlining might cause such cases and it's not valid to
reassociate floating-point instructions without the unsafe algebra flag.
Patch by Mehdi Amini <mehdi_amini@apple.com>!
llvm-svn: 221462
Particularly, it addresses cases where Reassociate breaks Subtracts but then fails to optimize combinations like I1 + -I2 where I1 and I2 have the same rank and are identical.
Patch by Dmitri Shtilman.
llvm-svn: 219092
This does not require -ffast-math, and it gives CSE/GVN more options to
eliminate duplicate expressions in, e.g.:
return ((x + 0.1234 * y) * (x - 0.1234 * y));
Differential Revision: http://reviews.llvm.org/D4904
llvm-svn: 216169
Handle "X + ~X" -> "-1" in the function Value *Reassociate::OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
This patch implements:
TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
Patch by Rahul Jain!
Differential Revision: http://reviews.llvm.org/D3835
llvm-svn: 209973
- Instead of setting the suffixes in a bunch of places, just set one master
list in the top-level config. We now only modify the suffix list in a few
suites that have one particular unique suffix (.ml, .mc, .yaml, .td, .py).
- Aside from removing the need for a bunch of lit.local.cfg files, this enables
4 tests that were inadvertently being skipped (one in
Transforms/BranchFolding, a .s file each in DebugInfo/AArch64 and
CodeGen/PowerPC, and one in CodeGen/SI which is now failing and has been
XFAILED).
- This commit also fixes a bunch of config files to use config.root instead of
older copy-pasted code.
llvm-svn: 188513
This update was done with the following bash script:
find test/Transforms -name "*.ll" | \
while read NAME; do
echo "$NAME"
if ! grep -q "^; *RUN: *llc" $NAME; then
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\(.*\)\([A-Za-z0-9_]*\):\( *\)@$FUNC\([( ]*\)\$/;\1\2-LABEL:\3@$FUNC(/g" $TEMP
done
mv $TEMP $NAME
fi
done
llvm-svn: 186268
When Reassociator optimize "(x | C1)" ^ "(X & C2)", it may swap the two
subexpressions, however, it forgot to swap cached constants (of C1 and C2)
accordingly.
rdar://13739160
llvm-svn: 180676
operands of the expression being written was wrongly thought to be reusable as
an inner node of the expression resulting in it turning up as both an inner node
*and* a leaf, creating a cycle in the def-use graph. This would have caused the
verifier to blow up if things had gotten that far, however it managed to provoke
an infinite loop first.
llvm-svn: 168291
the utility for extracting a chain of operations from the IR, thought that it
might as well combine any constants it came across (rather than just returning
them along with everything else). On the other hand, the factorization code
would like to see the individual constants (this is quite reasonable: it is
much easier to pull a factor of 3 out of 2*3 than it is to pull it out of 6;
you may think 6/3 isn't so hard, but due to overflow it's not as easy to undo
multiplications of constants as it may at first appear). This patch therefore
makes LinearizeExprTree stupider: it now leaves optimizing to the optimization
part of reassociate, and sticks to just analysing the IR.
llvm-svn: 168035
The assertion is trigged when the Reassociater tries to transform expression
... + 2 * n * 3 + 2 * m + ...
into:
... + 2 * (n*3 + m).
In the process of the transformation, a helper routine folds the constant 2*3 into 6,
confusing optimizer which is trying the to eliminate the common factor 2, and cannot
find 2 any more.
Review is pending. But I'd like commit first in order to help those who are waiting
for this fix.
llvm-svn: 167740
This was done through the aid of a terrible Perl creation. I will not
paste any of the horrors here. Suffice to say, it require multiple
staged rounds of replacements, state carried between, and a few
nested-construct-parsing hacks that I'm not proud of. It happens, by
luck, to be able to deal with all the TCL-quoting patterns in evidence
in the LLVM test suite.
If anyone is maintaining large out-of-tree test trees, feel free to poke
me and I'll send you the steps I used to convert things, as well as
answer any painful questions etc. IRC works best for this type of thing
I find.
Once converted, switch the LLVM lit config to use ShTests the same as
Clang. In addition to being able to delete large amounts of Python code
from 'lit', this will also simplify the entire test suite and some of
lit's architecture.
Finally, the test suite runs 33% faster on Linux now. ;]
For my 16-hardware-thread (2x 4-core xeon e5520): 36s -> 24s
llvm-svn: 159525
before the expression root. Any existing operators that are changed to use one
of them needs to be moved between it and the expression root, and recursively
for the operators using that one. When I rewrote RewriteExprTree I accidentally
inverted the logic, resulting in the compacting going down from operators to
operands rather than up from operands to the operators using them, oops. Fix
this, resolving PR12963.
llvm-svn: 159265
example degenerate phi nodes and binops that use themselves in unreachable code.
Thanks to Charles Davis for the testcase that uncovered this can of worms.
llvm-svn: 158508
POD type, causing memory corruption when mapping to APInts with bitwidth > 64.
Merge another crash testcase into crash.ll while there.
llvm-svn: 158369
topologies, it is quite possible for a leaf node to have huge multiplicity, for
example: x0 = x*x, x1 = x0*x0, x2 = x1*x1, ... rapidly gives a value which is x
raised to a vast power (the multiplicity, or weight, of x). This patch fixes
the computation of weights by correctly computing them no matter how big they
are, rather than just overflowing and getting a wrong value. It turns out that
the weight for a value never needs more bits to represent than the value itself,
so it is enough to represent weights as APInts of the same bitwidth and do the
right overflow-avoiding dance steps when computing weights. As a side-effect it
reduces the number of multiplies needed in some cases of large powers. While
there, in view of external uses (eg by the vectorizer) I made LinearizeExprTree
static, pushing the rank computation out into users. This is progress towards
fixing PR13021.
llvm-svn: 158358
can move instructions within the instruction list. If the instruction just
happens to be the one the basic block iterator is pointing to, and it is
moved to a different basic block, then we get into an infinite loop due to
the iterator running off the end of the basic block (for some reason this
doesn't fire any assertions). Original commit message:
Grab-bag of reassociate tweaks. Unify handling of dead instructions and
instructions to reoptimize. Exploit this to more systematically eliminate
dead instructions (this isn't very useful in practice but is convenient for
analysing some testcase I am working on). No need for WeakVH any more: use
an AssertingVH instead.
llvm-svn: 158199
instructions to reoptimize. Exploit this to more systematically eliminate
dead instructions (this isn't very useful in practice but is convenient for
analysing some testcase I am working on). No need for WeakVH any more: use
an AssertingVH instead.
llvm-svn: 158073
then it doesn't alter the instructions composing it, however it would continue
to move the instructions to just before the expression root. Ensure it doesn't
move them either, so now it really does nothing if there is nothing to do. That
commit also ensured that nsw etc flags weren't cleared if the expression was not
being changed. Tweak this a bit so that it doesn't clear flags on the initial
part of a computation either if that part didn't change but later bits did.
llvm-svn: 157518
with arbitrary topologies (previously it would give up when hitting a diamond
in the use graph for example). The testcase from PR12764 is now reduced from
a pile of additions to the optimal 1617*%x0+208. In doing this I changed the
previous strategy of dropping all uses for expression leaves to one of dropping
all but one use. This works out more neatly (but required a bunch of tweaks)
and is also safer: some recently fixed bugs during recursive linearization were
because the linearization code thinks it completely owns a node if it has no uses
outside the expression it is linearizing. But if the node was also in another
expression that had been linearized (and thus all uses of the node from that
expression dropped) then the conclusion that it is completely owned by the
expression currently being linearized is wrong. Keeping one use from within each
linearized expression avoids this kind of mistake.
llvm-svn: 157467
replace the operands of expressions with only one use with undef and generate
a new expression for the original without using RAUW to update the original.
Thus any copies of the original expression held in a vector may end up
referring to some bogus value - and using a ValueHandle won't help since there
is no RAUW. There is already a mechanism for getting the effect of recursion
non-recursively: adding the value to be recursed on to RedoInsts. But it wasn't
being used systematically. Have various places where recursion had snuck in at
some point use the RedoInsts mechanism instead. Fixes PR12169.
llvm-svn: 156379
elements to minimize the number of multiplies required to compute the
final result. This uses a heuristic to attempt to form near-optimal
binary exponentiation-style multiply chains. While there are some cases
it misses, it seems to at least a decent job on a very diverse range of
inputs.
Initial benchmarks show no interesting regressions, and an 8%
improvement on SPASS. Let me know if any other interesting results (in
either direction) crop up!
Credit to Richard Smith for the core algorithm, and helping code the
patch itself.
llvm-svn: 155616
1) Make the checked assertions a bit more precise. We really want the
canonical forms coming out of reassociate to be exactly what is
expected.
2) Remove other passes, and switch the test to actually directly check
that reassociate makes the important transforms and
canonicalizations.
3) Fold in a related test case now that we're using FileCheck. Make the
same tidying changes to it.
llvm-svn: 155311
patch brings numerous advantages to LLVM. One way to look at it
is through diffstat:
109 files changed, 3005 insertions(+), 5906 deletions(-)
Removing almost 3K lines of code is a good thing. Other advantages
include:
1. Value::getType() is a simple load that can be CSE'd, not a mutating
union-find operation.
2. Types a uniqued and never move once created, defining away PATypeHolder.
3. Structs can be "named" now, and their name is part of the identity that
uniques them. This means that the compiler doesn't merge them structurally
which makes the IR much less confusing.
4. Now that there is no way to get a cycle in a type graph without a named
struct type, "upreferences" go away.
5. Type refinement is completely gone, which should make LTO much MUCH faster
in some common cases with C++ code.
6. Types are now generally immutable, so we can use "Type *" instead
"const Type *" everywhere.
Downsides of this patch are that it removes some functions from the C API,
so people using those will have to upgrade to (not yet added) new API.
"LLVM 3.0" is the right time to do this.
There are still some cleanups pending after this, this patch is large enough
as-is.
llvm-svn: 134829
reassociation opportunities are exposed. This fixes a bug where
the nested reassociation expects to be the IR to be consistent,
but it isn't, because the outer reassociation has disconnected
some of the operands. rdar://9167457
llvm-svn: 129324
after it has finished all of its reassociations, because its
habit of unlinking operands and holding them in a datastructure
while working means that it's not easy to determine when an
instruction is really dead until after all its regular work is
done. rdar://9096268.
llvm-svn: 127424
operand being factorized (and erased) could occur several times in Ops,
resulting in freed memory being used when the next occurrence in Ops was
analyzed.
llvm-svn: 124287
positive and negative forms of constants together. This
allows us to compile:
int foo(int x, int y) {
return (x-y) + (x-y) + (x-y);
}
into:
_foo: ## @foo
subl %esi, %edi
leal (%rdi,%rdi,2), %eax
ret
instead of (where the 3 and -3 were not factored):
_foo:
imull $-3, 8(%esp), %ecx
imull $3, 4(%esp), %eax
addl %ecx, %eax
ret
this started out as:
movl 12(%ebp), %ecx
imull $3, 8(%ebp), %eax
subl %ecx, %eax
subl %ecx, %eax
subl %ecx, %eax
ret
This comes from PR5359.
llvm-svn: 92381
input filename so that opt doesn't print the input filename in the
output so that grep lines in the tests don't unintentionally match
strings in the input filename.
llvm-svn: 81537
integer and floating-point opcodes, introducing
FAdd, FSub, and FMul.
For now, the AsmParser, BitcodeReader, and IRBuilder all preserve
backwards compatability, and the Core LLVM APIs preserve backwards
compatibility for IR producers. Most front-ends won't need to change
immediately.
This implements the first step of the plan outlined here:
http://nondot.org/sabre/LLVMNotes/IntegerOverflow.txt
llvm-svn: 72897
Remove && from the end of the lines to prevent tests from throwing run
lines into the background. Also, clean up places where the same command
is run multiple times by using a temporary file.
llvm-svn: 36142
Upgrade to use new Tcl exec based test harness. This exposes 3 bugs that
were previously not being reported:
test/Transforms/GlobalDCE/2002-08-17-FunctionDGE.ll
test/Transforms/GlobalOpt/memset.ll
test/Transforms/IndVarsSimplify/exit_value_tests.llx
llvm-svn: 36065
global variables that needed to be passed in. This makes it possible to
add new global variables with only a couple changes (Makefile and llvm-dg.exp)
instead of touching every single dg.exp file.
llvm-svn: 35918
This feature is needed in order to support shifts of more than 255 bits
on large integer types. This changes the syntax for llvm assembly to
make shl, ashr and lshr instructions look like a binary operator:
shl i32 %X, 1
instead of
shl i32 %X, i8 1
Additionally, this should help a few passes perform additional optimizations.
llvm-svn: 33776