This indicates an intrinsic parameter is required to be a constant,
and should not be replaced with a non-constant value.
Add the attribute to all AMDGPU and generic intrinsics that comments
indicate it should apply to. I scanned other target intrinsics, but I
don't see any obvious comments indicating which arguments are intended
to be only immediates.
This breaks one questionable testcase for the autoupgrade. I'm unclear
on whether the autoupgrade is supposed to really handle declarations
which were never valid. The verifier fails because the attributes now
refer to a parameter past the end of the argument list.
llvm-svn: 355981
The Verifier is separate from the MachineVerifier, so move it to a
different directory. Some other verifier tests were scattered in
target codegen tests as well (although I'm sure I missed some). Work
towards using a more consistent naming scheme to make it clearer where
the gaps still are for generic instructions.
llvm-svn: 354138
These haven't been checking anything useful and have been testing the
wrong failure reason for many years. Replace them with something which
stresses what is actually implemented in the verifier now.
llvm-svn: 354070
A number of of tests were using imm operands, not cimm. Since CSE
relies on the exact ConstantInt* pointer used, and implicit
conversions are generally evil, also enforce the bitsize of the types.
llvm-svn: 353113
Implement options in clang to enable recording the driver command-line
in an ELF section.
Implement a new special named metadata, llvm.commandline, to support
frontends embedding their command-line options in IR/ASM/ELF.
This differs from the GCC implementation in some key ways:
* In GCC there is only one command-line possible per compilation-unit,
in LLVM it mirrors llvm.ident and multiple are allowed.
* In GCC individual options are separated by NULL bytes, in LLVM entire
command-lines are separated by NULL bytes. The advantage of the GCC
approach is to clearly delineate options in the face of embedded
spaces. The advantage of the LLVM approach is to support merging
multiple command-lines unambiguously, while handling embedded spaces
with escaping.
Differential Revision: https://reviews.llvm.org/D54487
Clang Differential Revision: https://reviews.llvm.org/D54489
llvm-svn: 349155
These opcodes are intended to subsume some of the capability of G_MERGE_VALUES,
as it was too powerful and thus complex to add deal with throughout the GISel
pipeline.
G_BUILD_VECTOR creates a vector value from a sequence of uniformly typed
scalar values. G_BUILD_VECTOR_TRUNC is a special opcode for handling scalar
operands which are larger than the destination vector element type, and
therefore does an implicit truncate.
G_CONCAT_VECTOR creates a vector by concatenating smaller, uniformly typed,
vectors together.
These will be used in a subsequent commit. This commit just adds the initial
infrastructure.
Differential Revision: https://reviews.llvm.org/D53594
llvm-svn: 348430
Summary:
StructRet attribute is not allowed in vararg calls. The statepoint
intrinsic is vararg, but the wrapped function may be not. Allow
calls of statepoint with StructRet arg, as long as the wrapped
function is not vararg.
Reviewers: thanm, anna
Reviewed By: anna
Subscribers: anna, llvm-commits
Differential Revision: https://reviews.llvm.org/D53602
llvm-svn: 347050
If present, PHI nodes must appear before non-PHI nodes in a basic block. The
register allocator relies on this and will fail to eliminate PHI's that do not
meet this requirement.
llvm-svn: 343731
This patch removes addBlockByrefAddress(), it is dead code as far as
clang is concerned: Every byref block capture is emitted with a
complex expression that is equivalent to what this function does.
rdar://problem/31629055
Differential Revision: https://reviews.llvm.org/D51763
llvm-svn: 341737
LangRef for BitCast requires that
"The bit sizes of value and the destination type, ty2, must be identical".
Currently verifier allows BitCast of pointer to vector of pointers so that
the sizes are different.
This change fixes that.
Reviewers: arsenm
Reviewed By: arsenm
Subscribers: llvm-commits, wdng
Differential Revision: https://reviews.llvm.org/D50886
llvm-svn: 340249
=== Generating the CG Profile ===
The CGProfile module pass simply gets the block profile count for each BB and scans for call instructions. For each call instruction it adds an edge from the current function to the called function with the current BB block profile count as the weight.
After scanning all the functions, it generates an appending module flag containing the data. The format looks like:
```
!llvm.module.flags = !{!0}
!0 = !{i32 5, !"CG Profile", !1}
!1 = !{!2, !3, !4} ; List of edges
!2 = !{void ()* @a, void ()* @b, i64 32} ; Edge from a to b with a weight of 32
!3 = !{void (i1)* @freq, void ()* @a, i64 11}
!4 = !{void (i1)* @freq, void ()* @b, i64 20}
```
Differential Revision: https://reviews.llvm.org/D48105
llvm-svn: 335794
This is the first pass in the main pipeline to use the legacy PM's
ability to run function analyses "on demand". Unfortunately, it turns
out there are bugs in that somewhat-hacky approach. At the very least,
it leaks memory and doesn't support -debug-pass=Structure. Unclear if
there are larger issues or not, but this should get the sanitizer bots
back to green by fixing the memory leaks.
llvm-svn: 335320
This patch adds support for generating a call graph profile from Branch Frequency Info.
The CGProfile module pass simply gets the block profile count for each BB and scans for call instructions. For each call instruction it adds an edge from the current function to the called function with the current BB block profile count as the weight.
After scanning all the functions, it generates an appending module flag containing the data. The format looks like:
!llvm.module.flags = !{!0}
!0 = !{i32 5, !"CG Profile", !1}
!1 = !{!2, !3, !4} ; List of edges
!2 = !{void ()* @a, void ()* @b, i64 32} ; Edge from a to b with a weight of 32
!3 = !{void (i1)* @freq, void ()* @a, i64 11}
!4 = !{void (i1)* @freq, void ()* @b, i64 20}
Differential Revision: https://reviews.llvm.org/D48105
llvm-svn: 335306
In order to set breakpoints on labels and list source code around
labels, we need collect debug information for labels, i.e., label
name, the function label belong, line number in the file, and the
address label located. In order to keep these information in LLVM
IR and to allow backend to generate debug information correctly.
We create a new kind of metadata for labels, DILabel. The format
of DILabel is
!DILabel(scope: !1, name: "foo", file: !2, line: 3)
We hope to keep debug information as much as possible even the
code is optimized. So, we create a new kind of intrinsic for label
metadata to avoid the metadata is eliminated with basic block.
The intrinsic will keep existing if we keep it from optimized out.
The format of the intrinsic is
llvm.dbg.label(metadata !1)
It has only one argument, that is the DILabel metadata. The
intrinsic will follow the label immediately. Backend could get the
label metadata through the intrinsic's parameter.
We also create DIBuilder API for labels to be used by Frontend.
Frontend could use createLabel() to allocate DILabel objects, and use
insertLabel() to insert llvm.dbg.label intrinsic in LLVM IR.
Differential Revision: https://reviews.llvm.org/D45024
Patch by Hsiangkai Wang.
llvm-svn: 331841
Summary:
This patch adds verification logic for DICompositeType vectors, ensuring that they only have one element, and that element is of type subrange.
This patch complements https://reviews.llvm.org/D44048
Reviewers: aprantl
Reviewed By: aprantl
Subscribers: JDevlieghere, llvm-commits
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D44262
llvm-svn: 327048
Rather than encode the absence of a checksum with a Kind variant, instead put
both the kind and value in a struct and wrap it in an Optional.
Differential Revision: http://reviews.llvm.org/D43043
llvm-svn: 324928
Add verification for copies involving generic registers if they are
compatible - ie if it is a generic copy, then the types are the
same, and if a COPY b/w generic and target virtual register, then
the sizes should be the same. Only checks if there are no sub registers
involved for now.
https://reviews.llvm.org/D37775
llvm-svn: 324696
n Rust, an enum that carries data in the variants is, essentially, a
discriminated union. Furthermore, the Rust compiler will perform
space optimizations on such enums in some situations. Previously,
DWARF for these constructs was emitted using a hack (a magic field
name); but this approach stopped working when more space optimizations
were added in https://github.com/rust-lang/rust/pull/45225.
This patch changes LLVM to allow discriminated unions to be
represented in DWARF. It adds createDiscriminatedUnionType and
createDiscriminatedMemberType to DIBuilder and then arranges for this
to be emitted using DWARF's DW_TAG_variant_part and DW_TAG_variant.
Note that DWARF requires that a discriminated union be represented as
a structure with a variant part. However, as Rust only needs to emit
pure discriminated unions, this is what I chose to expose on
DIBuilder.
Patch by Tom Tromey!
Differential Revision: https://reviews.llvm.org/D42082
llvm-svn: 324426
Discussed here:
http://lists.llvm.org/pipermail/llvm-dev/2018-January/120320.html
In preparation for adding support for named vregs we are changing the sigil for
physical registers in MIR to '$' from '%'. This will prevent name clashes of
named physical register with named vregs.
llvm-svn: 323922
Summary:
This patch extends the DISubrange 'count' field to take either a
(signed) constant integer value or a reference to a DILocalVariable
or DIGlobalVariable.
This is patch [1/3] in a series to extend LLVM's DISubrange Metadata
node to support debugging of C99 variable length arrays and vectors with
runtime length like the Scalable Vector Extension for AArch64. It is
also a first step towards representing more complex cases like arrays
in Fortran.
Reviewers: echristo, pcc, aprantl, dexonsmith, clayborg, kristof.beyls, dblaikie
Reviewed By: aprantl
Subscribers: rnk, probinson, fhahn, aemerson, rengolin, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D41695
llvm-svn: 323313
Normally when llvm-as sees only debug info errors in LLVM assembly, it simply
drops the debug info and outputs a valid LLVM bitcode and returns 0.
There is a bug in LLVM verifier which incorrectly treats a debug info error
as non-debug info error, which causes llvm-as returns 1 even though llvm-as
can drop the invalid debug info and outputs a valid LLVM bitcode.
This patch fixes that.
Differential Revision: https://reviews.llvm.org/D42391
llvm-svn: 323216
Summary:
In preparation for https://reviews.llvm.org/D41675 this NFC changes this
prototype of MemIntrinsicInst::setAlignment() to accept an unsigned instead
of a Constant.
llvm-svn: 322403
This implements the DWARF 5 feature described at
http://www.dwarfstd.org/ShowIssue.php?issue=141215.1
This allows a consumer to understand whether a composite data type is
trivially copyable and thus should be passed by value instead of by
reference. The canonical example is being able to distinguish the
following two types:
// S is not trivially copyable because of the explicit destructor.
struct S {
~S() {}
};
// T is a POD type.
struct T {
~T() = default;
};
This patch adds two new (DI)flags to LLVM metadata: TypePassByValue
and TypePassByReference.
<rdar://problem/36034922>
Differential Revision: https://reviews.llvm.org/D41743
llvm-svn: 321844
This came out of a recent discussion on llvm-dev
(https://reviews.llvm.org/D38042). Currently the Verifier will strip
the debug info metadata from a module if it finds the dbeug info to be
malformed. This feature is very valuable since it allows us to improve
the Verifier by making it stricter without breaking bcompatibility,
but arguable the Verifier pass should not be modifying the IR. This
patch moves the stripping of broken debug info into AutoUpgrade
(UpgradeDebugInfo to be precise), which is a much better location for
this since the stripping of malformed (i.e., produced by older, buggy
versions of Clang) is a (harsh) form of AutoUpgrade.
This change is mostly NFC in nature, the one big difference is the
behavior when LLVM module passes are introducing malformed debug
info. Prior to this patch, a NoAsserts build would have printed a
warning and stripped the debug info, after this patch the Verifier
will report a fatal error. I believe this behavior is actually more
desirable anyway.
Differential Revision: https://reviews.llvm.org/D38184
llvm-svn: 314699
This change simplifies code that has to deal with
DIGlobalVariableExpression and mirrors how we treat DIExpressions in
debug info intrinsics. Before this change there were two ways of
representing empty expressions on globals, a nullptr and an empty
!DIExpression().
If someone needs to upgrade out-of-tree testcases:
perl -pi -e 's/(!DIGlobalVariableExpression\(var: ![0-9]*)\)/\1, expr: !DIExpression())/g' <MYTEST.ll>
will catch 95%.
llvm-svn: 312144