Remove broken patterns matching it. This was matching the
unsafe math pattern and expanding the fix for the buggy instruction
from the pattern. The problems are also on CI. Remove the workarounds
and only use fract with unsafe math or from the intrinsic.
llvm-svn: 271078
Standard load/store instructions with GLC bit set.
Reviewers: tstellardAMD, arsenm
Differential Revision: http://reviews.llvm.org/D18760
llvm-svn: 265709
Summary:
Implement BUFFER_ATOMIC_CMPSWAP{,_X2} instructions on all GCN targets, and FLAT_ATOMIC_CMPSWAP{,_X2} on CI+.
32-bit instruction variants tested manually on Kabini and Bonaire. Tests and parts of code provided by Jan Veselý.
Patch by: Vedran Miletić
Reviewers: arsenm, tstellarAMD, nhaehnle
Subscribers: jvesely, scchan, kanarayan, arsenm
Differential Revision: http://reviews.llvm.org/D17280
llvm-svn: 265170
Changes:
- Added disassembler project
- Fixed all decoding conflicts in .td files
- Added DecoderMethod=“NONE” option to Target.td that allows to
disable decoder generation for an instruction.
- Created decoding functions for VS_32 and VReg_32 register classes.
- Added stubs for decoding all register classes.
- Added several tests for disassembler
Disassembler only supports:
- VI subtarget
- VOP1 instruction encoding
- 32-bit register operands and inline constants
[Valery]
One of the point that requires to pay attention to is how decoder
conflicts were resolved:
- Groups of target instructions were separated by using different
DecoderNamespace (SICI, VI, CI) using similar to AssemblerPredicate
approach.
- There were conflicts in IMAGE_<> instructions caused by two
different reasons:
1. dmask wasn’t specified for the output (fixed)
2. There are image instructions that differ only by the number of
the address components but have the same encoding by the HW spec. The
actual number of address components is determined by the HW at runtime
using image resource descriptor starting from the VGPR encoded in an
IMAGE instruction. This means that we should choose only one instruction
from conflicting group to be the rule for decoder. I didn’t find the way
to disable decoder generation for an arbitrary instruction and therefore
made a onelinear fix to tablegen generator that would suppress decoder
generation when DecoderMethod is set to “NONE”. This is a change that
should be reviewed and submitted first. Otherwise I would need to
specify different DecoderNamespace for every instruction in the
conflicting group. I haven’t checked yet if DecoderMethod=“NONE” is not
used in other targets.
3. IMAGE_GATHER decoder generation is for now disabled and to be
done later.
[/Valery]
Patch By: Sam Kolton
Differential Revision: http://reviews.llvm.org/D16723
llvm-svn: 261185
Historically, AMD internal sp3 assembler has flat_store* addr, data
format. To match existing code and to enable reuse, change LLVM
definitions to match. Also update MC and CodeGen tests.
Differential Revision: http://reviews.llvm.org/D16927
Patch by: Nikolay Haustov
llvm-svn: 260694
Make comments and indentation more consistent.
Rearrange a few things to be in a more consistent order,
such as organizing subtarget features from those describing
an actual device property, and those used as options.
llvm-svn: 258789
Summary:
We had to sets of identical FLAT patterns one inside the
HasFlatAddressSpace predicate and one inside the useFlatForGloabl
predicate. This patch merges these sets into a single pattern
under the isCIVI predicate.
The reason we can remove the predicates is that when MUBUF instructions
are legal, the instruction selector will prefer selecting those over
FLAT instructions because MUBUF patterns have a higher complexity score.
So, in this case having patterns for FLAT instructions will have no effect.
This change also simplifies the process for forcing global address space
loads to use FLAT instructions, since we no only have to disable the
MUBUF patterns instead of having to disable the MUBUF patterns and
enable the FLAT patterns.
Reviewers: arsenm, cfang
Subscribers: llvm-commits
llvm-svn: 256807
Summary: This was accidently moved to CIInstructions.td in r256282
Reviewers: cfang, arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D15763
llvm-svn: 256775
Summary:
For some reason doing executing an MUBUF instruction with the addr64
bit set and a zero base pointer in the resource descriptor causes
the memory operation to be dropped when the shader is executed using
the HSA runtime.
This kind of MUBUF instruction is commonly used when the pointer is
stored in VGPRs. The base pointer field in the resource descriptor
is set to zero and and the pointer is stored in the vaddr field.
This patch resolves the issue by only using flat instructions for
global memory operations when targeting HSA. This is an overly
conservative fix as all other configurations of MUBUF instructions
appear to work.
NOTE: re-commit by fixing a failure in Codegen/AMDGPU/llvm.dbg.value.ll
Reviewers: tstellarAMD
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D15543
llvm-svn: 256282
Summary:
For some reason doing executing an MUBUF instruction with the addr64
bit set and a zero base pointer in the resource descriptor causes
the memory operation to be dropped when the shader is executed using
the HSA runtime.
This kind of MUBUF instruction is commonly used when the pointer is
stored in VGPRs. The base pointer field in the resource descriptor
is set to zero and and the pointer is stored in the vaddr field.
This patch resolves the issue by only using flat instructions for
global memory operations when targeting HSA. This is an overly
conservative fix as all other configurations of MUBUF instructions
appear to work.
Reviewers: tstellarAMD
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D15543
llvm-svn: 256273
These are necessary for implementing mem_fence for
OpenCL 2.0.
The VI assembler tests are disabled since it seems to be
using the wrong encoding or opcode.
llvm-svn: 248532