Summary:
RCP has the accuracy limit. If FDIV fpmath require high accuracy rcp may not
meet the requirement. However, in DAG lowering, fpmath information gets lost,
and thus we may generate either inaccurate rcp related computation or slow code
for fdiv.
In patch implements fdiv optimizations in the AMDGPUCodeGenPrepare, which could
exactly know !fpmath.
FastUnsafeRcpLegal: We determine whether it is legal to use rcp based on
unsafe-fp-math, fast math flags, denormals and fpmath
accuracy request.
RCP Optimizations:
1/x -> rcp(x) when fast unsafe rcp is legal or fpmath >= 2.5ULP with
denormals flushed.
a/b -> a*rcp(b) when fast unsafe rcp is legal.
Use fdiv.fast:
a/b -> fdiv.fast(a, b) when RCP optimization is not performed and
fpmath >= 2.5ULP with denormals flushed.
1/x -> fdiv.fast(1,x) when RCP optimization is not performed and
fpmath >= 2.5ULP with denormals.
Reviewers:
arsenm
Differential Revision:
https://reviews.llvm.org/D71293
Every called function could possibly need this to calculate the
absolute address of stack objectst, and this avoids inserting a copy
around every call site in the kernel. It's also somewhat cleaner to
keep this in a callee saved SGPR.
llvm-svn: 363990
Introduce new versions that follow the IEEE semantics
to help with legalization that may need quieted inputs.
There are some regressions from inserting unnecessary
canonicalizes when these are matched from fast math
fcmp + select which should be fixed in a future commit.
llvm-svn: 344914
Everything should quiet, and I think everything should
flush.
I assume the min3/med3/max3 follow the same rules
as regular min/max for flushing, which should at
least be conservatively correct.
There are still more operations that need to
be handled.
llvm-svn: 339065
Add a parameter for testing specifically for
sNaNs - at least one instruction pattern on AMDGPU
needs to check specifically for this.
Also handle more cases, and add a target hook
for custom nodes, similar to the hooks for known
bits.
llvm-svn: 338910