- Each target asm parser now creates its own MCSubtatgetInfo (if needed).
- Changed AssemblerPredicate to take subtarget features which tablegen uses
to generate asm matcher subtarget feature queries. e.g.
"ModeThumb,FeatureThumb2" is translated to
"(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
llvm-svn: 134678
itineraries.
- Refactor TargetSubtarget to be based on MCSubtargetInfo.
- Change tablegen generated subtarget info to initialize MCSubtargetInfo
and hide more details from targets.
llvm-svn: 134257
be the first encoded as the first feature. It then uses the CPU name to look up
features / scheduling itineray even though clients know full well the CPU name
being used to query these properties.
The fix is to just have the clients explictly pass the CPU name!
llvm-svn: 134127
sink them into MC layer.
- Added MCInstrInfo, which captures the tablegen generated static data. Chang
TargetInstrInfo so it's based off MCInstrInfo.
llvm-svn: 134021
target machine from those that are only needed by codegen. The goal is to
sink the essential target description into MC layer so we can start building
MC based tools without needing to link in the entire codegen.
First step is to refactor TargetRegisterInfo. This patch added a base class
MCRegisterInfo which TargetRegisterInfo is derived from. Changed TableGen to
separate register description from the rest of the stuff.
llvm-svn: 133782
This simplifies many of the target description files since it is common
for register classes to be related or contain sequences of numbered
registers.
I have verified that this doesn't change the files generated by TableGen
for ARM and X86. It alters the allocation order of MBlaze GPR and Mips
FGR32 registers, but I believe the change is benign.
llvm-svn: 133105
The register allocators automatically filter out reserved registers and
place the callee saved registers last in the allocation order, so custom
methods are no longer necessary just for that.
Some targets still use custom allocation orders:
ARM/Thumb: The high registers are removed from GPR in thumb mode. The
NEON allocation orders prefer to use non-VFP2 registers first.
X86: The GR8 classes omit AH-DH in x86-64 mode to avoid REX trouble.
SystemZ: Some of the allocation orders are omitting R12 aliases without
explanation. I don't understand this target well enough to fix that. It
looks like all the boilerplate could be removed by reserving the right
registers.
llvm-svn: 132781
the alias of an InstAlias instead of the thing being aliased. Because we need to
know the features that are valid for an InstAlias.
This is part of a work-in-progress.
llvm-svn: 127986
In other words, do not keep track of argument's location. The debugger (gdb) is not prepared to see line table entries for arguments. For the debugger, "second" line table entry marks beginning of function body.
This requires some coordination with debugger to get this working.
- The debugger needs to be aware of prolog_end attribute attached with line table entries.
- The compiler needs to accurately mark prolog_end in line table entries (at -O0 and at -O1+)
llvm-svn: 126155
of testing for its presence at cmake time.
This way the build automatically regenerates the makefiles when a svn
update brings in a new sublibrary.
llvm-svn: 126068
No one uses *-mingw64. mingw-w64 is represented as {i686|x86_64}-w64-mingw32. In llvm side, i686 and x64 can be treated as similar way.
llvm-svn: 125747
Instead encode llvm IR level property "HasSideEffects" in an operand (shared
with IsAlignStack). Added MachineInstrs::hasUnmodeledSideEffects() to check
the operand when the instruction is an INLINEASM.
This allows memory instructions to be moved around INLINEASM instructions.
llvm-svn: 123044
are correctly marked as used. This removes a hack where the call instructions
marked all possible argument registers as used in the tablegen description.
llvm-svn: 121994
and "save_volatiles" correctly. This completes the custom calling convention
functionality changes for the MBlaze backend that were started in 121888.
llvm-svn: 121891
2. Make sure that the MBlaze stack is aligned to 4-byte boundaries.
3. Determine frame indexes that should be placed in the callers stack frame, as per the MBlaze ABI, and place them in the correct locations.
llvm-svn: 121639
2. Re-adding .mask and .frame directives in printed assembly.
3. Adding .ent and .end directives in printed assembly.
4. Minor cleanups to MBlaze backend.
llvm-svn: 120095
2. Fixing several errors in disassembler uncovered by test cases.
3. Fixing invalid encoding of PCMPEQ and PCMPNE uncovered by test cases.
llvm-svn: 118969
2. Parsing .word directive in MBlaze asm parser
3. Fixing hack where memory instructions reversed order of last two parameters
4. Fixing many improperly encoded instructions
5. Support parsing special instructions (MFS,MTS,etc.)
6. Removing unused functions from inst printer
llvm-svn: 118941
value type, so there is no point in passing it around using
an EVT. Use the simpler MVT everywhere. Rather than trying
to propagate this information maximally in all the code that
using the calling convention stuff, I chose to do a mainly
low impact change instead.
llvm-svn: 118167
Instead of silently ignoring these instructions, emit a hard error and
force the target author to either refactor the target or mark the
instruction 'isCodeGenOnly'.
Mark a few instructions in ARM and MBlaze as isCodeGenOnly the are
doing this.
llvm-svn: 117858
mostly based on the ARM AsmParser at this time and is not particularly
functional.
Changed the MBlaze data layout from:
"E-p:32:32-i8:8:8-i16:16:16-i64:32:32-f64:32:32-v64:32:32-v128:32:32-n32"
to:
"E-p:32:32:32-i8:8:8-i16:16:16"
because the MicroBlaze doesn't have i64, f64, v64, or v128 data types.
Cleaned up the MBlaze source code:
1. The floating point register class has been removed. The
MicroBlaze does not have floating point registers. Floating
point values are simply stored in integer registers.
2. Renaming the CPURegs register class to GPR to reflect the
standard naming.
3. Removing a lot of stale code from AsmPrinter after
the conversion to InstPrinter.
4. Simplified sign extended loads by marking them as
expanded in ISelLowering.
llvm-svn: 117054
1. A delay slot filler that searches for valid instructions
to fill the delay slot with. Previously NOPs would always
be inserted into delay slots.
2. Support for MC based instruction printer added.
3. Support for MC based machine code generation and ELF
file generation. ELF file generation does not yet
completely work as much of the ELF support infrastructure
is still x86/x86-64 specific.
4. General clean up of the MBlaze backend code. Much of the
tablegen code has been cleanup and simplified.
Bug Fixes:
1. Removed duplicate periods from subtarget feature descriptions.
2. Many of the instructions had bad machine code information
in the tablegen files. Much of this has been fixed.
llvm-svn: 116986
passed the root of the match, even though only a few patterns
actually needed this (one in X86, several in ARM [which should
be refactored anyway], and some in CellSPU that I don't feel
like detangling). Instead of requiring all ComplexPatterns to
take the dead root, have targets opt into getting the root by
putting SDNPWantRoot on the ComplexPattern.
llvm-svn: 114471
The only folding these load/store architectures can do is converting COPY into a
load or store, and the target independent part of foldMemoryOperand already
knows how to do that.
llvm-svn: 108099
addresses a longstanding deficiency noted in many FIXMEs scattered
across all the targets.
This effectively moves the problem up one level, replacing eleven
FIXMEs in the targets with eight FIXMEs in CodeGen, plus one path
through FastISel where we actually supply a DebugLoc, fixing Radar
7421831.
llvm-svn: 106243
A Register with subregisters must also provide SubRegIndices for adressing the
subregisters. TableGen automatically inherits indices for sub-subregisters to
minimize typing.
CompositeIndices may be specified for the weirder cases such as the XMM sub_sd
index that returns the same register, and ARM NEON Q registers where both D
subregs have ssub_0 and ssub_1 sub-subregs.
It is now required that all subregisters are named by an index, and a future
patch will also require inherited subregisters to be named. This is necessary to
allow composite subregister indices to be reduced to a single index.
llvm-svn: 104704
A Register with subregisters must also provide SubRegIndices for adressing the
subregisters. TableGen automatically inherits indices for sub-subregisters to
minimize typing.
CompositeIndices may be specified for the weirder cases such as the XMM sub_sd
index that returns the same register, and ARM NEON Q registers where both D
subregs have ssub_0 and ssub_1 sub-subregs.
It is now required that all subregisters are named by an index, and a future
patch will also require inherited subregisters to be named. This is necessary to
allow composite subregister indices to be reduced to a single index.
llvm-svn: 104654
the variable actually tracks.
N.B., several back-ends are using "HasCalls" as being synonymous for something
that adjusts the stack. This isn't 100% correct and should be looked into.
llvm-svn: 103802
Move EmitTargetCodeForMemcpy, EmitTargetCodeForMemset, and
EmitTargetCodeForMemmove out of TargetLowering and into
SelectionDAGInfo to exercise this.
llvm-svn: 103481
const_casts, and it reinforces the design of the Target classes being
immutable.
SelectionDAGISel::IsLegalToFold is now a static member function, because
PIC16 uses it in an unconventional way. There is more room for API
cleanup here.
And PIC16's AsmPrinter no longer uses TargetLowering.
llvm-svn: 101635
When a target instruction wants to set target-specific flags, it should simply
set bits in the TSFlags bit vector defined in the Instruction TableGen class.
This works well because TableGen resolves member references late:
class I : Instruction {
AddrMode AM = AddrModeNone;
let TSFlags{3-0} = AM.Value;
}
let AM = AddrMode4 in
def ADD : I;
TSFlags gets the expected bits from AddrMode4 in this example.
llvm-svn: 100384
"asm printering" happens through MCStreamer. This also
Streamerizes PIC16 debug info, which escaped my attention.
This removes a leak from LLVMTargetMachine of the 'legacy'
output stream.
llvm-svn: 100327
intrinsics. The intrinsic lookup code assumes that this check has been done
and assumes the names are at least 6 characters long. Valgrind complained
about this. pr6638.
llvm-svn: 98831
and passing off ownership to AsmPrinter. Now MachineModuleInfo
creates it and owns it by value. This allows us to use MCSymbols
more consistently throughout the rest of the code generator, and
simplifies a bit of code. This also allows MachineFunction to
keep an MCContext reference handy, and cleans up the TargetRegistry
interfaces for AsmPrinters.
llvm-svn: 98450
is preparatory to having PEI's scavenged frame index value reuse logic
properly distinguish types of frame values (e.g., whether the value is
stack-pointer relative or frame-pointer relative).
No functionality change.
llvm-svn: 98086
The MicroBlaze backend was generating stack layouts that did not
conform correctly to the ABI. This update generates stack layouts
which are closer to what GCC does.
Variable arguments support was added as well but the stack layout
for varargs has not been finalized.
llvm-svn: 97807
DoInstructionSelection. Inline "SelectRoot" into it from DAGISelHeader.
Sink some other stuff out of DAGISelHeader into SDISel.
Eliminate the various 'Indent' stuff from various targets, which dates
to when isel was recursive.
17 files changed, 114 insertions(+), 430 deletions(-)
llvm-svn: 97555
Adding the function "lookupGCCName" to the MBlazeIntrinsicInfo
class to support the Clang MicroBlaze target.
Additionally, minor fixes which remove some unused PIC code
(PIC is not supported yet in the MicroBlaze backend) and
removed some unused variables.
llvm-svn: 97054
The MicroBlaze is a highly configurable 32-bit soft-microprocessor for
use on Xilinx FPGAs. For more information see:
http://www.xilinx.com/tools/microblaze.htmhttp://en.wikipedia.org/wiki/MicroBlaze
The current LLVM MicroBlaze backend generates assembly which can be
compiled using the an appropriate binutils assembler.
llvm-svn: 96969