Clang has logic to lower certain conditional expressions directly into
llvm select instructions. However, it does not emit the correct profile
counter increment as it does this: it emits an unconditional increment
of the counter for the 'then branch', even if the value selected is from
the 'else branch' (this is PR32019).
That means, given the following snippet, we would report that "0" is
selected twice, and that "1" is never selected:
int f1(int x) {
return x ? 0 : 1;
^2 ^0
}
f1(0);
f1(1);
Fix the problem by using the instrprof_increment_step intrinsic to do
the proper increment.
llvm-svn: 296231
Teach ubsan to diagnose remainder operations which have undefined
behavior due to signed overflow (e.g INT_MIN % -1).
Differential Revision: https://reviews.llvm.org/D29437
llvm-svn: 296214
C requires the operands of arithmetic expressions to be promoted if
their types are smaller than an int. Ubsan emits overflow checks when
this sort of type promotion occurs, even if there is no way to actually
get an overflow with the promoted type.
This patch teaches clang how to omit the superflous overflow checks
(addressing PR20193).
Testing: check-clang and check-ubsan.
Differential Revision: https://reviews.llvm.org/D29369
llvm-svn: 296213
Looks like %T isn't per-test but per-test-directory, and
the rm was deleting temp files written by other tests in
test/Format. Limit the rm's scope a bit.
llvm-svn: 296171
r289428 added a separate language kind for Objective-C, but kept many
"Language == LK_Cpp" checks untouched. This introduced a "IsCpp()"
method that returns true for both C++ and Objective-C++, and replaces
all comparisons of Language with LK_Cpp with calls to this new method.
Also add a lot more test coverge for formatting things in LK_ObjC mode,
by having FormatTest's verifyFormat() test for LK_ObjC everything that's
being tested for LK_Cpp at the moment.
Fixes PR32060 and many other things.
llvm-svn: 296160
in macro argument pre-expansion mode when skipping a function body
This commit fixes a token caching problem that currently occurs when clang is
skipping a function body (e.g. when looking for a code completion token) and at
the same time caching the tokens for _Pragma when lexing it in macro argument
pre-expansion mode.
When _Pragma is being lexed in macro argument pre-expansion mode, it caches the
tokens so that it can avoid interpreting the pragma immediately (as the macro
argument may not be used in the macro body), and then either backtracks over or
commits these tokens. The problem is that, when we're backtracking/committing in
such a scenario, there's already a previous backtracking position stored in
BacktrackPositions (as we're skipping the function body), and this leads to a
situation where the cached tokens from the pragma (like '(' 'string_literal'
and ')') will remain in the cached tokens array incorrectly even after they're
consumed (in the case of backtracking) or just ignored (in the case when they're
committed). Furthermore, what makes it even worse, is that because of a previous
backtracking position, the logic that deals with when should we call
ExitCachingLexMode in CachingLex no longer works for us in this situation, and
more tokens in the macro argument get cached, to the point where the EOF token
that corresponds to the macro argument EOF is cached. This problem leads to all
sorts of issues in code completion mode, where incorrect errors get presented
and code completion completely fails to produce completion results.
rdar://28523863
Differential Revision: https://reviews.llvm.org/D28772
llvm-svn: 296140
Fix an assertion that is hit when a redeclaration with differing types only
differs in the unaligned type-qualifier.
Differential Revision: https://reviews.llvm.org/D29986
llvm-svn: 296099
The runtime support is provided directly by the Fuchsia system C
library.
Patch by Roland McGrath
Differential Revision: https://reviews.llvm.org/D30238
llvm-svn: 296082
The goal of this is to fix a bug in modules where we'd merge
FunctionDecls that differed in their pass_object_size attributes. Since
we can overload on the presence of pass_object_size attributes, this
behavior is incorrect.
We don't represent `N` in `pass_object_size(N)` as part of
ExtParameterInfo, since it's an error to overload solely on the value of
N. This means that we have a bug if we have two modules that declare
functions that differ only in their pass_object_size attrs, like so:
// In module A, from a.h
void foo(char *__attribute__((pass_object_size(0))));
// In module B, from b.h
void foo(char *__attribute__((pass_object_size(1))));
// In module C, in main.c
#include "a.h"
#include "b.h"
At the moment, we'll merge the foo decls, when we should instead emit a
diagnostic about an invalid overload. We seem to have similar (silent)
behavior if we overload only on the return type of `foo` instead; I'll
try to find a good place to put a FIXME (or I'll just file a bug) soon.
This patch also fixes a bug where we'd not output the proper extended
parameter info for declarations with pass_object_size attrs.
llvm-svn: 296076
compiler is run in a mode where the default C++ standard is newer than C++03.
The reason is because one of the warnings checked is only produced when the
compiler is using C++03 or lower.
This change fixes this problem as well as adds explicit run lines to run the
test in C++03 and C++11 modes.
llvm-svn: 296066
Fix the fact that we don't assign profile counters to constructors in
classes with virtual bases, or constructors with variadic parameters.
Differential Revision: https://reviews.llvm.org/D30131
llvm-svn: 296062
This patch moves helper functions that are CPU-specific out of Driver.cpp and to
separate implementation files. The new files are named for the architecture,
e.g. ARMArch.cpp.
The next step after this will be to move OS-specific code, which I expect will
include many of the tool implementations, to similarly separate files.
Some CPU-specific functions are not being moved just yet. In cases where the
only caller is the platform-specific tools, I plan to move them together. An
example is Hexagon, where the only caller of the architecture-specific functions
are the tools themselves. (I'm happy to revise this choice, it just seems like
less churn to me.)
This does mean that some functions which were previously static are now exposed
through the library header Driver.h.
Reviewers: rsmith, javed.absar
Subscribers: aemerson, danalbert, srhines, dschuff, jyknight, nemanjai, mgorny, cfe-commits
Differential Revision: https://reviews.llvm.org/D30315
llvm-svn: 296056
routines for objects that are captured with the __unsafe_unretained
ownership qualifier
This is a preparation commit that improves code-coverage in code that emits
block copy/dispose routines.
llvm-svn: 296048
routines for variables that are const-captured
This is a preparation commit that improves code-coverage in code that emits
block copy/dispose routines.
llvm-svn: 296040
This patch makes use of the prefix/suffix ABI argument distinction that
was introduced in r295870, so that we now emit ExtParameterInfo at the
correct offset for member calls that have added ABI arguments. I don't
see a good way to test the generated param info, since we don't actually
seem to use it in CGFunctionInfo outside of Swift. Any
suggestions/thoughts for how to better test this are welcome. :)
This patch also fixes a small bug with inheriting constructors: if we
decide not to pass args into an base class ctor, we would still
generate ExtParameterInfo as though we did. The added test-case is for
that behavior.
llvm-svn: 296024
This fixes an assertion failure in cases where we had expression
statements that declared variables nested inside of pass_object_size
args. Since we were emitting the same ExprStmt twice (once for the arg,
once for the @llvm.objectsize call), we were getting issues with
redefining locals.
This also means that we can be more lax about when we emit
@llvm.objectsize for pass_object_size args: since we're reusing the
arg's value itself, we don't have to care so much about side-effects.
llvm-svn: 295935
Fields will now have their types added to the hash, allowing for detection of
mismatched field types. This detection allows the existing ODR checking to
produce the correct message.
Differential Revision: https://reviews.llvm.org/D21675
llvm-svn: 295931
Rather than attempting to compare whether the previous and current top of
context stack are "equal" (which fails for a number of reasons, such as the
context stack entries containing pointers to objects on the stack, or reaching
the same "top of stack" entry through two different paths), track the depth of
context stack at which we last emitted a note and invalidate it when we pop the
context stack to less than that depth.
This causes us to emit some missing "in instantiation of" notes and to stop
emitting redundant "in instantiation of" stacks matching the previous stack in
rare cases.
llvm-svn: 295921