Details: To make instruction selection really divergence driven it is necessary to assign
the correct register classes to the cross block values beforehand. For the divergent targets
same value type requires different register classes dependent on the value divergence.
Reviewers: rampitec, nhaehnle
Differential Revision: https://reviews.llvm.org/D59990
llvm-svn: 361644
Detect dead lanes can create some dead defs. Then RenameIndependentSubregs
will break a REG_SEQUENCE which may use these dead defs. At this point
a dead instruction can be removed but we do not run a DCE anymore.
MachineDCE was only running before live variable analysis. The patch
adds a mean to preserve LiveIntervals and SlotIndexes in case it works
past this.
Differential Revision: https://reviews.llvm.org/D59626
llvm-svn: 357805
This replaces most argument uses with loads, but for
now not all.
The code in SelectionDAG for calling convention lowering
is actively harmful for amdgpu_kernel. It attempts to
split the argument types into register legal types, which
results in low quality code for arbitary types. Since
all kernel arguments are passed in memory, we just want the
raw types.
I've tried a couple of methods of mitigating this in SelectionDAG,
but it's easier to just bypass this problem alltogether. It's
possible to hack around the problem in the initial lowering,
but the real problem is the DAG then expects to be able to use
CopyToReg/CopyFromReg for uses of the arguments outside the block.
Exposing the argument loads in the IR also has the advantage
that the LoadStoreVectorizer can merge them.
I'm not sure the best approach to dealing with the IR
argument list is. The patch as-is just leaves the IR arguments
in place, so all the existing code will still compute the same
kernarg size and pointlessly lowers the arguments.
Arguably the frontend should emit kernels with an empty argument
list in the first place. Alternatively a dummy array could be
inserted as a single argument just to reserve space.
This does have some disadvantages. Local pointer kernel arguments can
no longer have AssertZext placed on them as the equivalent !range
metadata is not valid on pointer typed loads. This is mostly bad
for SI which needs to know about the known bits in order to use the
DS instruction offset, so in this case this is not done.
More importantly, this skips noalias arguments since this pass
does not yet convert this to the equivalent !alias.scope and !noalias
metadata. Producing this metadata correctly seems to be tricky,
although this logically is the same as inlining into a function which
doesn't exist. Additionally, exposing these loads to the vectorizer
may result in degraded aliasing information if a pointer load is
merged with another argument load.
I'm also not entirely sure this is preserving the current clover
ABI, although I would greatly prefer if it would stop widening
arguments and match the HSA ABI. As-is I think it is extending
< 4-byte arguments to 4-bytes but doesn't align them to 4-bytes.
llvm-svn: 335650
Currently SI_IF results in a s_and_saveexec_b64 followed by s_xor_b64.
The xor is used to extract only the changed bits. In case of a simple
if region where the only use of that value is in the SI_END_CF to
restore the old exec mask, we can omit the xor and perform an or of
the exec mask with the original exec value saved by the
s_and_saveexec_b64.
Differential Revision: https://reviews.llvm.org/D35861
llvm-svn: 309185
Currently the default C calling convention functions are treated
the same as compute kernels. Make this explicit so the default
calling convention can be changed to a non-kernel.
Converted with perl -pi -e 's/define void/define amdgpu_kernel void/'
on the relevant test directories (and undoing in one place that actually
wanted a non-kernel).
llvm-svn: 298444
For some reason there are both of these available, except
for scalar 64-bit compares which only has u64. I'm not sure
why there are both (I'm guessing it's for the one bit inputs we
don't use), but for consistency always using the
unsigned one.
llvm-svn: 282832
In case of COPY-like instruction we may be able to deduce that a certain
input is unused, based on the used lanes of the register defined by the
instruction.
This even works accross otherwise incompatible copies (no need to have
compatible lanemasks, completely unused operands are still completely
unused). It even makes sense to redo the analysis in this case since we
gained information for a case we previously stopped at because of the
incompatible masks.
llvm-svn: 268815
Summary:
This includes a hazard recognizer implementation to replace some of
the hazard handling we had during frame index elimination.
Reviewers: arsenm
Subscribers: qcolombet, arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18602
llvm-svn: 268143
Summary:
The goal is for each operand type to have its own parse function and
at the same time share common code for tracking state as different
instruction types share operand types (e.g. glc/glc_flat, etc).
Introduce parseAMDGPUOperand which can parse any optional operand.
DPP and Clamp/OMod have custom handling for now. Sam also suggested
to have class hierarchy for operand types instead of table. This
can be done in separate change.
Remove parseVOP3OptionalOps, parseDS*OptionalOps, parseFlatOptionalOps,
parseMubufOptionalOps, parseDPPOptionalOps.
Reduce number of definitions of AsmOperand's and MatchClasses' by using common base class.
Rename AsmMatcher/InstPrinter methods accordingly.
Print immediate type when printing parsed immediate operand.
Use 'off' if offset/index register is unused instead of skipping it to make it more readable (also agreed with SP3).
Update tests.
Reviewers: tstellarAMD, SamWot, artem.tamazov
Subscribers: qcolombet, arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D19584
llvm-svn: 268015
Summary:
This pass is unnecessary and overly conservative. It was motivated by
situations like
def %vreg0:SGPR_32
...
if-block:
..
def %vreg1:SGPR_32
...
else-block:
...
use %vreg0:SGPR_32
...
and similar situations with uses after the non-uniform control flow, where
we are not allowed to assign %vreg0 and %vreg1 to the same physical register,
even though in the original, thread/workitem-based CFG, it looks like the
live ranges of these registers do not overlap.
However, by the time register allocation runs, we have moved to a wave-based
CFG that accurately represents the fact that the wave may run through both
the if- and the else-block. So the live ranges of %vreg0 and %vreg1 already
overlap even without the SIFixSGPRLiveRanges pass.
In addition to proving this change correct, I have tested it with Piglit
and a small number of other tests.
Reviewers: arsenm, tstellarAMD
Subscribers: MatzeB, arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D19041
llvm-svn: 266345
Summary:
This results in higher register usage, but should make it easier for
the compiler to hide latency.
This pass is a prerequisite for some more scheduler improvements, and I
think the increase register usage with this patch is acceptable, because
when combined with the scheduler improvements, the total register usage
will decrease.
shader-db stats:
2382 shaders in 478 tests
Totals:
SGPRS: 48672 -> 49088 (0.85 %)
VGPRS: 34148 -> 34847 (2.05 %)
Code Size: 1285816 -> 1289128 (0.26 %) bytes
LDS: 28 -> 28 (0.00 %) blocks
Scratch: 492544 -> 573440 (16.42 %) bytes per wave
Max Waves: 6856 -> 6846 (-0.15 %)
Wait states: 0 -> 0 (0.00 %)
Depends on D18451
Reviewers: nhaehnle, arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18452
llvm-svn: 264876
A call to removeEmptySubranges() is necessary after every operation that
potentially removes all segments from a subregister range; this case in
the register coalescer was missing.
llvm-svn: 241027