(lldb) command script import heap.py
Find all malloc blocks that contains a pointer value of 0x1234000:
(lldb) ptr_refs 0x1234000
Find all malloc blocks that contain a C string:
(lldb) cstr_refs "hello"
Get info on a malloc block that starts at or contains 0x12340000
(lldb) malloc_info 0x12340000
llvm-svn: 154602
First we can load the module:
(lldb) command script import /Volumes/work/gclayton/Documents/src/lldb/examples/darwin/heap_find/heap.py
Loading "/Volumes/work/gclayton/Documents/src/lldb/examples/darwin/heap_find/libheap.dylib"...ok
Image 0 loaded.
"heap_ptr_refs" and "heap_cstr_refs" commands have been installed, use the "--help" options on these commands for detailed help.
Lets take a look at the variable "my":
(lldb) fr var *my
(MyString) *my = {
MyBase = {
NSObject = {
isa = MyString
}
propertyMovesThings = 0
}
str = 0x0000000100301a60
date = 0x0000000100301e60
_desc_pauses = NO
}
We can see that this contains an ivar "str" which has a pointer value of "0x0000000100301a60". Lets search the heap for this pointer and see what we find:
(lldb) heap_ptr_refs 0x0000000100301a60
found pointer 0x0000000100301a60: block = 0x103800270, size = 384, offset = 168, type = 'void *'
found pointer 0x0000000100301a60: block = 0x100301cf0, size = 48, offset = 16, type = 'MyString *', ivar = 'str'
(MyString) *addr = {
MyBase = {
NSObject = {
isa = MyString
}
propertyMovesThings = 0
}
str = 0x0000000100301a60
date = 0x0000000100301e60
_desc_pauses = NO
}
found pointer 0x0000000100301a60: block = 0x100820000, size = 4096, offset = 96, type = (autorelease object pool)
found pointer 0x0000000100301a60: block = 0x100820000, size = 4096, offset = 104, type = (autorelease object pool)
Note that it used dynamic type info to find that it was in "MyString" at offset 16 and it also found the ivar "str"!
We can also look for C string values on the heap. Lets look for "a.out":
(lldb) heap_cstr_refs "a.out"
found cstr a.out: block = 0x10010ce00, size = 96, offset = 85, type = '__NSCFString *'
found cstr a.out: block = 0x100112d90, size = 80, offset = 68, type = 'void *'
found cstr a.out: block = 0x100114490, size = 96, offset = 85, type = '__NSCFString *'
found cstr a.out: block = 0x100114530, size = 112, offset = 97, type = '__NSCFString *'
found cstr a.out: block = 0x100114e40, size = 32, offset = 17, type = '__NSCFString *'
found cstr a.out: block = 0x100114fa0, size = 32, offset = 17, type = '__NSCFString *'
found cstr a.out: block = 0x100300780, size = 160, offset = 128, type = '__NSCFData *'
found cstr a.out: block = 0x100301a60, size = 112, offset = 97, type = '__NSCFString *'
found cstr a.out: block = 0x100821000, size = 4096, offset = 100, type = 'void *'
We see we have some objective C classes that contain this, so lets "po" all of the results by adding the --po option:
(lldb) heap_cstr_refs a.out --po
found cstr a.out: block = 0x10010ce00, size = 96, offset = 85, type = '__NSCFString *'
(__NSCFString *) 0x10010ce00 /Volumes/work/gclayton/Documents/src/lldb/test/lang/objc/foundation/a.out
found cstr a.out: block = 0x100112d90, size = 80, offset = 68, type = 'void *'
found cstr a.out: block = 0x100114490, size = 96, offset = 85, type = '__NSCFString *'
(__NSCFString *) 0x100114490 /Volumes/work/gclayton/Documents/src/lldb/test/lang/objc/foundation/a.out
found cstr a.out: block = 0x100114530, size = 112, offset = 97, type = '__NSCFString *'
(__NSCFString *) 0x100114530 Hello from '/Volumes/work/gclayton/Documents/src/lldb/test/lang/objc/foundation/a.out'
found cstr a.out: block = 0x100114e40, size = 32, offset = 17, type = '__NSCFString *'
(__NSCFString *) 0x100114e40 a.out.dSYM
found cstr a.out: block = 0x100114fa0, size = 32, offset = 17, type = '__NSCFString *'
(__NSCFString *) 0x100114fa0 a.out
found cstr a.out: block = 0x100300780, size = 160, offset = 128, type = '__NSCFData *'
(__NSCFData *) 0x100300780 <48656c6c 6f206672 6f6d2027 2f566f6c 756d6573 2f776f72 6b2f6763 6c617974 6f6e2f44 6f63756d 656e7473 2f737263 2f6c6c64 622f7465 73742f6c 616e672f 6f626a63 2f666f75 6e646174 696f6e2f 612e6f75 742700>
found cstr a.out: block = 0x100301a60, size = 112, offset = 97, type = '__NSCFString *'
(__NSCFString *) 0x100301a60 Hello from '/Volumes/work/gclayton/Documents/src/lldb/test/lang/objc/foundation/a.out'
found cstr a.out: block = 0x100821000, size = 4096, offset = 100, type = 'void *'
llvm-svn: 154519
new features:
(1) it outputs the instruction currently being
tested to a log file, if a path is provided
(2) if instructed, it prints the time remaining
in the exhaustive test
llvm-svn: 154205
Right now it only works on Mac OS X, but other
platforms would just need to add their own
implementation of AddLLDBToSysPathOn*().
The stress-tester has two modes:
Used with --bytes N --random, the stress-tester
generates random instructions of length N and
runs them through the disassembler. This is
suitable for architectures like Intel where it
is combinatorially infeasible to run through the
entire space of possible instructions.
Used with --bytes N and no arguments (or --start
S --stride T), the stress-tester tests the
disassembler with a monotonically increasing
sequence of instructions.
The --start and --stride arguments are intended
for use in multiprocessing environments. Give
each core an ID from 0 .. T-1, pass the ID in as
the --start, and use T as the stride, and you
can launch one copy of the stress-tester on each
core you have available.
llvm-svn: 154143
We are introducing a new Logger class on the Python side. This has the same purpose, but is unrelated, to the C++ logging facility
The Pythonic logging can be enabled by using the following scripting commands:
(lldb) script Logger._lldb_formatters_debug_level = {0,1,2,...}
0 = no logging
1 = do log
2 = flush after logging each line - slower but safer
3 or more = each time a Logger is constructed, log the function that has created it
more log levels may be added, each one being more log-active than the previous
by default, the log output will come out on your screen, to direct it to a file:
(lldb) script Logger._lldb_formatters_debug_filename = 'filename'
that will make the output go to the file - set to None to disable the file output and get screen logging back
Logging has been enabled for the C++ STL formatters and for Cocoa class NSData - more logging will follow
synthetic children providers for classes list and map (both libstdcpp and libcxx) now have internal capping for safety reasons
this will fix crashers where a malformed list or map would not ever meet our termination conditions
to set the cap to a different value:
(lldb) script {gnu_libstdcpp|libcxx}.{map|list}_capping_size = new_cap (by default, it is 255)
you can optionally disable the loop detection algorithm for lists
(lldb) script {gnu_libstdcpp|libcxx}.list_uses_loop_detector = False
llvm-svn: 153676
A new setting enable-synthetic-value is provided on the target to disable this behavior.
There also is a new GetNonSyntheticValue() API call on SBValue to go back from synthetic to non-synthetic. There is no call to go from non-synthetic to synthetic.
The test suite has been changed accordingly.
Fallout from changes to type searching: an hack has to be played to make it possible to use maps that contain std::string due to the special name replacement operated by clang
Fixing a test case that was using libstdcpp instead of libc++ - caught as a consequence of said changes to type searching
llvm-svn: 153495
parse the output from "log enable --timestamp ...." and converts it to be relative
to the first timestamp and shows the time deltas between log lines. This can also
be used as a stand along script outside of lldb:
./delta.py log.txt
llvm-svn: 153288
(lldb) file /path/to/file.so
(lldb) crashlog crash.log
....
Then if the file.so has already been loaded it will use the one that is already in LLDB without trying to match up the paths.
llvm-svn: 153075
Changes to synthetic children:
- the update(self): function can now (optionally) return a value - if it returns boolean value True, ValueObjectSyntheticFilter will not clear its caches across stop-points
this should allow better performance for Python-based synthetic children when one can be sure that the child ValueObjects have not changed
- making a difference between a synthetic VO and a VO with a synthetic value: now a ValueObjectSyntheticFilter will not return itself as its own synthetic value, but will (correctly)
claim to itself be synthetic
- cleared up the internal synthetic children architecture to make a more consistent use of pointers and references instead of shared pointers when possible
- major cleanup of unnecessary #include, data and functions in ValueObjectSyntheticFilter itself
- removed the SyntheticValueType enum and replaced it with a plain boolean (to which it was equivalent in the first place)
Some clean ups to the summary generation code
Centralized the code that clears out user-visible strings and data in ValueObject
More efficient summaries for libc++ containers
llvm-svn: 153061
This has been done for those summaries where the difference is only cosmetic (e.g. naming things as items instead of values, ...)
The LLDB output style has been preserved when it provides more information (e.g. telling the type as well as the value of an NSNumber)
Test cases have been updated to reflect the updated output style where necessary
llvm-svn: 152592
std::string has a summary provider
std::vector std::list and std::map have both a summary and a synthetic children provider
Given the usage of a custom namespace (std::__1::classname) for the implementation of libc++, we keep both libstdcpp and libc++ formatters enabled at the same time since that raises no conflicts and enabled for seamless transition between the two
The formatters for libc++ reside in a libcxx category, and are loaded from libcxx.py (to be found in examples/synthetic)
The formatters-stl test cases have been divided to be separate for libcxx and libstdcpp. This separation is necessary because
(a) we need different compiler flags for libc++ than for libstdcpp
(b) libc++ inlines a lot more than libstdcpp and some code changes were required to accommodate this difference
llvm-svn: 152570
This solves an issue where a ValueObject was getting a wrong children count (usually, a huge value) and trying to resize the vector of children to fit that many ValueObject*
Added a loop detection algorithm to the synthetic children provider for std::list
Added a few more checks to the synthetic children provider for std::vector
Both std::list and std::vector's synthetic children providers now cache the count of children instead of recomputing it every time
std::map has a field that stores the count, so there is little need to cache it on our side
llvm-svn: 152371
(a) the SystemParameters object is now passed around to the formatters; doing so enables the formatters to reuse computed values for things such as pointer-size and endianness
instead of repeatedly computing these on their own
(b) replacing the global ISA cache with a per-process one
(c) providing a per-process types cache where each formatter can store the types it needs to operate, and be sure to find them the next time without recalculating them
this also enables formatters to share types if they agree on a local naming convention
(d) lazy fetching of data from Objective-C runtime data structures
data is fetched as needed and we stop reading as soon as we determine that an ISA is actually garbage
llvm-svn: 152052
fixed a few potential NULL-pointer derefs in ValueObject
we have a way to provide docstrings for properties we add to the SWIG layer - a few of these properties have a docstring already, more will come in future commits
added a new bunch of properties to SBData to make it more natural and Python-like to access the data they contain
llvm-svn: 151962
(b) fixes and improvements to the formatters for NSDate and NSString
(c) adding an introspection formatter for NSCountedSet
(d) making the Objective-C formatters test cases pass on both 64 and 32 bit
one of the test cases is marked as expected failure on i386 - support needs to be added to the LLDB core for it to pass
llvm-svn: 151826
2) providing an updated list of tagged pointers values for the objc_runtime module - hopefully this one is final
3) changing ValueObject::DumpValueObject to use an Options class instead of providing a bulky list of parameters to pass around
this change had been laid out previously, but some clients of DumpValueObject() were still using the old prototype and some arguments
were treated in a special way and passed in directly instead of through the Options class
4) providing new GetSummaryAsCString() and GetValueAsCString() calls in ValueObject that are passed a formatter object and a destination string
and fill the string by formatting themselves using the formatter argument instead of the default for the current ValueObject
5) removing the option to have formats and summaries stick to a variable for the current stoppoint
after some debate, we are going with non-sticky: if you say frame variable --format hex foo, the hex format will only be applied to the current command execution and not stick when redisplaying foo
the other option would be full stickiness, which means that foo would be formatted as hex for its whole lifetime
we are open to suggestions on what feels "natural" in this regard
llvm-svn: 151801
a) adds a Python summary provider for NSDate
b) changes the initialization for ScriptInterpreter so that we are not passing a bulk of Python-specific function pointers around
c) provides a new ScriptInterpreterObject class that allows for ref-count safe wrapping of scripting objects on the C++ side
d) contains much needed performance improvements:
1) the pointer to the Python function generating a scripted summary is now cached instead of looked up every time
2) redundant memory reads in the Python ObjC runtime wrapper are eliminated
3) summaries now use the m_summary_str in ValueObject to store their data instead of passing around ( == copying) an std::string object
e) contains other minor fixes, such as adding descriptive error messages for some cases of summary generation failure
llvm-svn: 151703
I started work on being able to add symbol files after a debug session
had started with a new "target symfile add" command and quickly ran into
problems with stale Address objects in breakpoint locations that had
lldb_private::Section pointers into modules that had been removed or
replaced. This also let to grabbing stale modules from those sections.
So I needed to thread harded the Address, Section and related objects.
To do this I modified the ModuleChild class to now require a ModuleSP
on initialization so that a weak reference can created. I also changed
all places that were handing out "Section *" to have them hand out SectionSP.
All ObjectFile, SymbolFile and SymbolVendors were inheriting from ModuleChild
so all of the find plug-in, static creation function and constructors now
require ModuleSP references instead of Module *.
Address objects now have weak references to their sections which can
safely go stale when a module gets destructed.
This checkin doesn't complete the "target symfile add" command, but it
does get us a lot clioser to being able to do such things without a high
risk of crashing or memory corruption.
llvm-svn: 151336
The formatter for NSString is an improved version of the one previously shipped as an example, the others are new in design and implementation.
A more robust and OO-compliant Objective-C runtime wrapper is provided for runtime versions 1 and 2 on 32 and 64 bit.
The formatters are contained in a category named "AppKit", which is not enabled at startup.
llvm-svn: 151300
Patch to fix the main.cpp compile error submitted by Dmitry Vyukov <dvyukov@google.com>.
Also add a Makefile, plus some modification to main.cpp.
llvm-svn: 150990
sbvalue.value (<SBValue>)
sbvalue.variable (<SBValue>)
Initialize both with a lldb.SBValue
sbvalue.value() make all sorts of convenience properties. Type "help(sbvalue.value)"
in the embedded python interpreter to see what is available.
sbvalue.variable() wraps a lldb.SBValue and allows you to play with your variable just
as you would expect:
pt = sbvalue.variable (lldb.frame.FindVariable("pt"))
print pt.x
print py.y
argv = sbvalue.variable (lldb.frame.FindVariable("argv"))
print argv[0]
Member access and array acccess is all taken care of!
llvm-svn: 149260
When this is imported into your lldb using the "command script import /path/to/gdbremote.py"
these new commands are available within LLDB. 'start_gdb_log' will enable logging with
timestamps for GDB remote packets, and 'stop_gdb_log' will then dump the details and
also a lot of packet timing data. This allows us to accurately track what packets are
taking up the most time when debugging (when using the ProcessGDBRemote debugging plug-in).
Also udpated the comments at the top of the cmdtemplate.py to show how to correctly import
the module from within LLDB.
llvm-svn: 149030
python so that single and double quotes and other standard shell like argument
parsing happens as expected before passing stuff along to option parsing.
Also handle exceptions so that we don't accidentally exit lldb if an uncaught
exception occurs.
llvm-svn: 148623
filled out the command help and removed unused options.
Updated the command to have a "--load-all" option that will cause the target
that gets created to locate and load all images specified in the Binary Images
section of the crash log to allow for complete program state to be matched
to that of the crash log, not just the images that were in the stack frames
(the default).
llvm-svn: 148605
environment variable it set to include a path to lldb.py.
Also fixed the case where the executable can't be located and doesn't match
what is installed on the current system. It will still symbolicate the other
frames, and will just show what was originally in the crash log file.
Also removed the --crash-log option so the arguments to the "crashlog"
command are one or more paths to crash logs.
Fixed the script to "auto-install" itself when loaded from the embedded
script interpreter. Now you only need to import the module and the
command is ready for use.
llvm-svn: 148561
of the identifier name in the binary images section. Improved the regular
expression for the frames.
Added a new file "crashlog.lldb" which can be sourced with "command source"
that will import the module and set itself up to be used as a command.
llvm-svn: 148529
module (you can't import a module with a '-' in it) and also added a
Symbolcate(...) top level function so it can be imported and used as an
LLDB command.
Then you can import the module and map a "crashlog" command (for darwin
use only currently) to the python function "crashlog.Symbolicate":
(lldb) script import crashlog
(lldb) command script add -f crashlog.Symbolicate crashlog
Then use it to symbolicate:
(lldb) crashlog --crash-log /path/to/foo.crash
The crash log will then get symbolicated and inline frames will be added to
the crash log and the frames will be displayed. The crash log currently will
only try and fetch and setup the target images requires in order to do the
symbolication.
This will need to be iterated upon, but it is getting close to being useful
so I am going to check this in.
llvm-svn: 148528
to find data on the heap. To use this, make the project and then when stopped in your
lldb debug session:
(lldb) process load /path/to/libheap.dylib
(lldb) find_pointer_in_heap (0x112233000000)
This will grep everything in all active allocation blocks and print and malloc blocks that contain the pointer 0x112233000000.
This can also work for c strings:
(lldb) find_cstring_in_heap ("hello")
llvm-svn: 148523
functions that can create file descriptors and close them. It will warn when
there close file descriptor call that returns with EBADF and show the
corresponding stack backtraces that caused the issue. It will also log all
file descriptor create and delete calls. See the comments at the top of
FDInterposing.cpp for all of the details.
llvm-svn: 147816
symbol context that represents an inlined function. This function has been
renamed internally to:
bool
SymbolContext::GetParentOfInlinedScope (const Address &curr_frame_pc,
SymbolContext &next_frame_sc,
Address &next_frame_pc) const;
And externally to:
SBSymbolContext
SBSymbolContext::GetParentOfInlinedScope (const SBAddress &curr_frame_pc,
SBAddress &parent_frame_addr) const;
The correct blocks are now correctly calculated.
Switched the stack backtracing engine (in StackFrameList) and the address
context printing over to using the internal SymbolContext::GetParentOfInlinedScope(...)
so all inlined callstacks will match exactly.
llvm-svn: 140910
is mostly geared towards darwin crash logs at the moment, though
it could be made more generic with a few tweaks.
The symbolicate-crash.py script will make a target given a crash log
and then symbolicate all frames and expand any frames that had inlined
functions in them to show all frames back to the concrete function. It
will also disassemble around the crash site.
llvm-svn: 140544
- all instances of "vobj" have been renamed to "valobj"
- class Debugger::Formatting has been renamed to DataVisualization (defined in FormatManager.h/cpp)
The interface to this class has not changed
- FormatCategory now uses ConstString's as keys to the navigators instead of repeatedly casting
from ConstString to const char* and back all the time
Next step is making the same happen for categories themselves
- category gnu-libstdc++ is defined in the constructor for a FormatManager
The source code for it is defined in gnu_libstdcpp.py, drawn from examples/synthetic at compile time
All references to previous 'osxcpp' name have been removed from both code and file names
Functional changes:
- the name of the option to use a summary string for 'type summary add' has changed from the previous --format-string
to the new --summary-string. It is expected that the short option will change from -f to -s, and -s for --python-script
will become -o
llvm-svn: 137886