A long time ago LLDB wanted to start using StringRef instead of
C-Strings/ConstString but was blocked by the fact that the StringRef constructor
that takes a C-string was asserting that the C-string isn't a nullptr. To
workaround this, D24697 introduced a special function called `withNullAsEmpty`
and that's what LLDB (and only LLDB) started to use to build StringRefs from
C-strings.
A bit later it seems that `withNullAsEmpty` was declared too awkward to use and
instead the assert in the StringRef constructor got removed (see D24904). The
rest of LLDB was then converted to StringRef by just calling the now perfectly
usable implicit constructor.
However, all the calls to `withNullAsEmpty` just remained and are now just
strange artefacts in the code base that just look out of place. It's also
curiously a LLDB-exclusive function and no other project ever called it since
it's introduction half a decade ago.
This patch removes all uses of `withNullAsEmpty`. The follow up will be to
remove the function from StringRef.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D102597
This patch introduces a new class, MaxVFCandidates, that holds the
maximum vectorization factors that have been computed for both scalable
and fixed-width vectors.
This patch is intended to be NFC for fixed-width vectors, although
considering a scalable max VF (which is disabled by default) pessimises
tail-loop elimination, since it can no longer determine if any chosen VF
(less than fixed/scalable MaxVFs) is guaranteed to handle all vector
iterations if the trip-count is known. This issue will be addressed in
a future patch.
Reviewed By: fhahn, david-arm
Differential Revision: https://reviews.llvm.org/D98721
Override __cxa_atexit and ignore callbacks.
This prevents crashes in a configuration when the symbolizer
is built into sanitizer runtime and consequently into the test process.
LLVM libraries have some global objects destroyed during exit,
so if the test process triggers any bugs after that, the symbolizer crashes.
An example stack trace of such crash:
For the standalone llvm-symbolizer this does not hurt,
we just don't destroy few global objects on exit.
Reviewed By: kda
Differential Revision: https://reviews.llvm.org/D102470
This patch moves g_executables to private member of Runtime class
and is renamed to HSAExecutables following LLVM naming convention.
This movement required making Runtime::Initialize and Runtime::Finalize
non-static. Verified the correctness of this change by running
libomptarget tests on gfx906.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D102600
This patch is the Part-1 (FE Clang) implementation of HW Exception handling.
This new feature adds the support of Hardware Exception for Microsoft Windows
SEH (Structured Exception Handling).
This is the first step of this project; only X86_64 target is enabled in this patch.
Compiler options:
For clang-cl.exe, the option is -EHa, the same as MSVC.
For clang.exe, the extra option is -fasync-exceptions,
plus -triple x86_64-windows -fexceptions and -fcxx-exceptions as usual.
NOTE:: Without the -EHa or -fasync-exceptions, this patch is a NO-DIFF change.
The rules for C code:
For C-code, one way (MSVC approach) to achieve SEH -EHa semantic is to follow
three rules:
* First, no exception can move in or out of _try region., i.e., no "potential
faulty instruction can be moved across _try boundary.
* Second, the order of exceptions for instructions 'directly' under a _try
must be preserved (not applied to those in callees).
* Finally, global states (local/global/heap variables) that can be read
outside of _try region must be updated in memory (not just in register)
before the subsequent exception occurs.
The impact to C++ code:
Although SEH is a feature for C code, -EHa does have a profound effect on C++
side. When a C++ function (in the same compilation unit with option -EHa ) is
called by a SEH C function, a hardware exception occurs in C++ code can also
be handled properly by an upstream SEH _try-handler or a C++ catch(...).
As such, when that happens in the middle of an object's life scope, the dtor
must be invoked the same way as C++ Synchronous Exception during unwinding
process.
Design:
A natural way to achieve the rules above in LLVM today is to allow an EH edge
added on memory/computation instruction (previous iload/istore idea) so that
exception path is modeled in Flow graph preciously. However, tracking every
single memory instruction and potential faulty instruction can create many
Invokes, complicate flow graph and possibly result in negative performance
impact for downstream optimization and code generation. Making all
optimizations be aware of the new semantic is also substantial.
This design does not intend to model exception path at instruction level.
Instead, the proposed design tracks and reports EH state at BLOCK-level to
reduce the complexity of flow graph and minimize the performance-impact on CPP
code under -EHa option.
One key element of this design is the ability to compute State number at
block-level. Our algorithm is based on the following rationales:
A _try scope is always a SEME (Single Entry Multiple Exits) region as jumping
into a _try is not allowed. The single entry must start with a seh_try_begin()
invoke with a correct State number that is the initial state of the SEME.
Through control-flow, state number is propagated into all blocks. Side exits
marked by seh_try_end() will unwind to parent state based on existing
SEHUnwindMap[].
Note side exits can ONLY jump into parent scopes (lower state number).
Thus, when a block succeeds various states from its predecessors, the lowest
State triumphs others. If some exits flow to unreachable, propagation on those
paths terminate, not affecting remaining blocks.
For CPP code, object lifetime region is usually a SEME as SEH _try.
However there is one rare exception: jumping into a lifetime that has Dtor but
has no Ctor is warned, but allowed:
Warning: jump bypasses variable with a non-trivial destructor
In that case, the region is actually a MEME (multiple entry multiple exits).
Our solution is to inject a eha_scope_begin() invoke in the side entry block to
ensure a correct State.
Implementation:
Part-1: Clang implementation described below.
Two intrinsic are created to track CPP object scopes; eha_scope_begin() and eha_scope_end().
_scope_begin() is immediately added after ctor() is called and EHStack is pushed.
So it must be an invoke, not a call. With that it's also guaranteed an
EH-cleanup-pad is created regardless whether there exists a call in this scope.
_scope_end is added before dtor(). These two intrinsics make the computation of
Block-State possible in downstream code gen pass, even in the presence of
ctor/dtor inlining.
Two intrinsic, seh_try_begin() and seh_try_end(), are added for C-code to mark
_try boundary and to prevent from exceptions being moved across _try boundary.
All memory instructions inside a _try are considered as 'volatile' to assure
2nd and 3rd rules for C-code above. This is a little sub-optimized. But it's
acceptable as the amount of code directly under _try is very small.
Part-2 (will be in Part-2 patch): LLVM implementation described below.
For both C++ & C-code, the state of each block is computed at the same place in
BE (WinEHPreparing pass) where all other EH tables/maps are calculated.
In addition to _scope_begin & _scope_end, the computation of block state also
rely on the existing State tracking code (UnwindMap and InvokeStateMap).
For both C++ & C-code, the state of each block with potential trap instruction
is marked and reported in DAG Instruction Selection pass, the same place where
the state for -EHsc (synchronous exceptions) is done.
If the first instruction in a reported block scope can trap, a Nop is injected
before this instruction. This nop is needed to accommodate LLVM Windows EH
implementation, in which the address in IPToState table is offset by +1.
(note the purpose of that is to ensure the return address of a call is in the
same scope as the call address.
The handler for catch(...) for -EHa must handle HW exception. So it is
'adjective' flag is reset (it cannot be IsStdDotDot (0x40) that only catches
C++ exceptions).
Suppress push/popTerminate() scope (from noexcept/noTHrow) so that HW
exceptions can be passed through.
Original llvm-dev [RFC] discussions can be found in these two threads below:
https://lists.llvm.org/pipermail/llvm-dev/2020-March/140541.htmlhttps://lists.llvm.org/pipermail/llvm-dev/2020-April/141338.html
Differential Revision: https://reviews.llvm.org/D80344/new/
This initial patch removes some unused variables from global namespace.
There will more incoming patches for moving global variables to classes
or static members.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D102598
This diff changes the type of the argument of isCodeSection to const InputSection *.
NFC.
Test plan: make check-lld-macho
Differential revision: https://reviews.llvm.org/D102664
This change tries to handle multiple dominating users of the pointer operand
by choosing the most immediately dominating one, if possible. While making
this change I also found that the previous implementation had a missing break
statement, making all loads with an odd number of dominating users emit an
OtherAccess value, so that has also been fixed.
Patch by Henrik G Olsson!
Differential Revision: https://reviews.llvm.org/D79097
The main motivation for this refactor is to remove the subclass
relationship between the InputSegment and MergeInputSegment and
SyntenticMergedInputSegment so that we can use the merging classes for
debug sections which are not data segments.
In the process of refactoring I also remove all the virtual functions
from the class hierarchy and try to reuse techniques used in the ELF
linker (see `lld/ELF/InputSections.h`).
Differential Revision: https://reviews.llvm.org/D102546
This reverts commit 6d3e3ae8a9.
Still seeing PPC build bot failures, and one arm self host bot failing. I'm officially stumped, and need help from a bot owner to reduce.
During inlining of call-site with deoptimize intrinsic callee we miss
attributes set on this call site. As a result attributes like deopt-lowering are
disappeared resulting in inefficient behavior of register allocator in codegen.
Just copy attributes for deoptimize call like we do for others calls.
Reviewers: reames, apilipenko
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D102602
Only supported with -polly-position=early. Unfortunately, the
extension point callpack for VectorizerStart only passes a
FunctionPassManager, making it impossible to add a module pass.
Comment was poorly written. Changed to bail on contradictory information in
the double round.
Reviewed By: NatashaKnk
Differential Revision: https://reviews.llvm.org/D102651
This patch updates `SBCompileUnit::FindLineEntryIndex` to pass a valid
`LineEntry` pointer to `CompileUnit::FindLineEntry`.
This caused `LineTable::FindLineEntryIndexByFileIndexImpl` to return its
`best_match` initial value (UINT32_MAX).
rdar://78115426
Differential Revision: https://reviews.llvm.org/D102658
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
`match()` can only return for non-empty vectors, but at least in
non-LTO builds that isn't clear to the compiler. Help it out.
This is a minor but measurable speedup on my machine (but less
than what we might've lost in https://reviews.llvm.org/D100818#2764272 --
bot note higher N on this measurement here, so higher confidence here):
% ministat at_main at_branch
x at_main
+ at_branch
N Min Max Median Avg Stddev
x 30 3.9243979 4.0395119 3.987375 3.9826236 0.027567796
+ 30 3.8495831 4.0009291 3.931325 3.9347135 0.037832878
Difference at 95.0% confidence
-0.0479101 +/- 0.0171102
-1.20298% +/- 0.429622%
(Student's t, pooled s = 0.0331007)
No behavior change.
Eventually we should apply these lists at symbol parse time instead of
every time shouldExportSymbol() though :)
Differential Revision: https://reviews.llvm.org/D102655
Resubmit after fixing test/Transforms/LoopVectorize/ARM/mve-gather-scatter-tailpred.ll
Previous commit message...
This is a resubmit of 3e5ce4 (which was reverted by 7fe41ac). The original commit caused a PPC build bot failure we never really got to the bottom of. I can't reproduce the issue, and the bot owner was non-responsive. In the meantime, we stumbled across an issue which seems possibly related, and worked around a latent bug in 80e8025. My best guess is that the original patch exposed that latent issue at higher frequency, but it really is just a guess.
Original commit message follows...
If we know that the scalar epilogue is required to run, modify the CFG to end the middle block with an unconditional branch to scalar preheader. This is instead of a conditional branch to either the preheader or the exit block.
The motivation to do this is to support multiple exit blocks. Specifically, the current structure forces us to identify immediate dominators and *which* exit block to branch from in the middle terminator. For the multiple exit case - where we know require scalar will hold - these questions are ill formed.
This is the last change needed to support multiple exit loops, but since the diffs are already large enough, I'm going to land this, and then enable separately. You can think of this as being NFCIish prep work, but the changes are a bit too involved for me to feel comfortable tagging the review that way.
Differential Revision: https://reviews.llvm.org/D94892
This is a resubmit of 3e5ce4 (which was reverted by 7fe41ac). The original commit caused a PPC build bot failure we never really got to the bottom of. I can't reproduce the issue, and the bot owner was non-responsive. In the meantime, we stumbled across an issue which seems possibly related, and worked around a latent bug in 80e8025. My best guess is that the original patch exposed that latent issue at higher frequency, but it really is just a guess.
Original commit message follows...
If we know that the scalar epilogue is required to run, modify the CFG to end the middle block with an unconditional branch to scalar preheader. This is instead of a conditional branch to either the preheader or the exit block.
The motivation to do this is to support multiple exit blocks. Specifically, the current structure forces us to identify immediate dominators and *which* exit block to branch from in the middle terminator. For the multiple exit case - where we know require scalar will hold - these questions are ill formed.
This is the last change needed to support multiple exit loops, but since the diffs are already large enough, I'm going to land this, and then enable separately. You can think of this as being NFCIish prep work, but the changes are a bit too involved for me to feel comfortable tagging the review that way.
Differential Revision: https://reviews.llvm.org/D94892
This reverts commit bd5751f3d2.
This patch series is causing us to every so often miss switching
the state from eStateRunning to eStateStopped when we get the stop
packet from the debug server.
Reverting till I can figure out how that could be happening.
Similar versions of these already exist, this effectively just just
factors them out into STLExtras. I plan to use these in future patches.
Differential Revision: https://reviews.llvm.org/D100672
The implementation just extends the vector to a larger element type, and
extracts from that. Not fancy, but generates reasonable code.
There was discussion in the review of doing the promotion in
target-independent code, but I'm sticking with this to avoid making
LegalizeDAG infrastructure more complicated.
Differential Revision: https://reviews.llvm.org/D87651
Recommitting after fixing a bug found post commit. Amusingly, try 1 had been correct, and by reverting to incorporate last minute review feedback, I introduce the bug. Oops. :)
The problem was that recursively deleting an instruction can delete instructions beyond the current iterator (via a dead phi), thus invalidating iteration. Test case added in LoopUnroll/dce.ll to cover this case.
LoopUnroll does a limited DCE pass after unrolling, but if you have a chain of dead instructions, it only deletes the last one. Improve the code to recursively delete all trivially dead instructions.
Differential Revision: https://reviews.llvm.org/D102511
WebAssemblyDebugValueManager class currently does not handle
DBG_VALUE_LIST instructions correctly for two reasons, which are
explained in https://bugs.llvm.org/show_bug.cgi?id=50361.
This effectively nullifies DBG_VALUE_LISTs in
WebAssemblyDebugValueManager so that the info will appear as "optimized
out" in debuggers but still be at least correct in the meantime.
Reviewed By: dschuff, jmorse
Differential Revision: https://reviews.llvm.org/D102589
The tests of fdebug-compilation-dir and -ffile-compilation-dir for `-x
assembler` are assuming integrated-as.
If the platform set the no-itegrated-as by default (eg: AIX for now), then this test will
fail.
Add the -integrated-as to aviod relying on the platform defaults.
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D102647
I wouldn't recommend writing code like the testcase; a function
parameter isn't atomic, so using an atomic type doesn't really make
sense. But it's valid, so clang shouldn't crash on it.
The code was assuming hasAggregateEvaluationKind(Ty) implies Ty is a
RecordType, which isn't true. Just use isRecordType() instead.
Differential Revision: https://reviews.llvm.org/D102015
Besides -Bdynamic and -Bstatic, ld documents additional aliases for both of these options. Instead of -Bstatic, one may write -dn, -non_shared or -static. Instead of -Bdynamic one may write -dy or -call_shared. Source: https://sourceware.org/binutils/docs-2.36/ld/Options.html
This patch adds those aliases to the MinGW driver of lld for the sake of ld compatibility.
Encountered this case while compiling a static Qt 6.1 distribution and got build failures as -static was passed directly to the linker, instead of through the compiler driver.
Differential Revision: https://reviews.llvm.org/D102637
This is one of the folds requested in:
https://llvm.org/PR39480https://alive2.llvm.org/ce/z/NczU3V
Note - this uses the normal FMF propagation logic
(flags transfer from the final value to new/intermediate ops).
It's not clear if this matches what Alive2 implements,
so we may want to adjust one or the other.
Follow up to D88631 but for aarch64; the Linux kernel uses the command
line flags:
1. -mstack-protector-guard=sysreg
2. -mstack-protector-guard-reg=sp_el0
3. -mstack-protector-guard-offset=0
to use the system register sp_el0 for the stack canary, enabling the
kernel to have a unique stack canary per task (like a thread, but not
limited to userspace as the kernel can preempt itself).
Address pr/47341 for aarch64.
Fixes: https://github.com/ClangBuiltLinux/linux/issues/289
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed By: xiangzhangllvm, DavidSpickett, dmgreen
Differential Revision: https://reviews.llvm.org/D100919
The LAM mode is currently untested by check-hwasan, so we only need
to build the runtime in aliasing mode. Because LAM mode will always
need to be conditional (because only certain hardware will support
it) we can always just disable the LAM lit tests if it ever starts
being tested.