This is an improvement of [0]. This adds checking of
original llvm.dbg.values()/declares() instructions in
optimizations.
We have picked a real issue that has been found with
this (actually, picked one variable location missing
from [1] and resolved the issue), and the result is
the fix for that -- D100844.
Before applying the D100844, using the options from [0]
(but with this patch applied) on the compilation of GDB 7.11,
the final HTML report for the debug-info issues can be found
at [1] (please scroll down, and look for
"Summary of Variable Location Bugs"). After applying
the D100844, the numbers has improved a bit -- please take
a look into [2].
[0] https://llvm.org/docs/HowToUpdateDebugInfo.html\
[1] https://djolertrk.github.io/di-check-before-adce-fix/
[2] https://djolertrk.github.io/di-check-after-adce-fix/
Differential Revision: https://reviews.llvm.org/D100845
This happens during the error-recovery, and it would esacpe all
dependent-type check guards in getTypeInfo/constexpr-evaluator code
paths, which lead to crashes.
Differential Revision: https://reviews.llvm.org/D102773
Strictly speaking, the architecture manual no longer uses the st
mnemonic, but that's a much more intrusive change for little gain.
Differential Revision: https://reviews.llvm.org/D96313
This adds the straightforward conversion for EqualOp
(two complex numbers are equal if both the real and the imaginary part are equal).
Differential Revision: https://reviews.llvm.org/D102840
When trying to return a type such as <vscale x 1 x i32> from a
function we crash in DAGTypeLegalizer::WidenVecRes_EXTRACT_SUBVECTOR
when attempting to get the fixed number of elements in the vector.
For the simple case we are dealing with, i.e. extracting
<vscale x 1 x i32> from index 0 of input vector <vscale x 4 x i32>
we can simply rely upon existing code that just returns the input.
Differential Revision: https://reviews.llvm.org/D102605
Haswell, Excavator and early Ryzen all have slower 256-bit non-uniform vector shifts (confirmed on AMDSoG/Agner/instlatx64 and llvm models) - so bump the worst case costs accordingly.
Noticed while investigating PR50364
This adds custom lowering for the MLOAD and MSTORE ISD nodes when
passed fixed length vectors in SVE. This is done by converting the
vectors to VLA vectors and using the VLA code generation.
Fixed length extending loads and truncating stores currently produce
correct code, but do not use the built in extend/truncate in the
load and store instructions. This will be fixed in a future patch.
Differential Revision: https://reviews.llvm.org/D101834
This will allow to use llvm-strip with file names that begin with dashes.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D102825
This patch prepares llvm-objcopy to move its implementation
into a separate library. To make it possible it is necessary
to minimize internal dependencies.
Differential Revision: https://reviews.llvm.org/D99055
The Linux kernel has removed the interface to cyclades from
the latest kernel headers[1] due to them being orphaned for the
past 13 years.
libsanitizer uses this header when compiling against glibc, but
glibcs itself doesn't seem to have any references to cyclades.
Further more it seems that the driver is broken in the kernel and
the firmware doesn't seem to be available anymore.
As such since this is breaking the build of libsanitizer (and so the
GCC bootstrap[2]) I propose to remove this.
[1] https://lkml.org/lkml/2021/3/2/153
[2] https://gcc.gnu.org/bugzilla/show_bug.cgi?id=100379
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D102059
When attempting to return something like a <vscale x 1 x i32>
type from a function we end up trying to widen the vector by
inserting a <vscale x 1 x i32> subvector into an undefined
<vscale x 4 x i32> vector. However, during legalisation we
then attempt to widen the INSERT_SUBVECTOR operands and hit
an error in WidenVectorOperand.
This patch adds a new WidenVecOp_INSERT_SUBVECTOR function
that currently only supports inserting subvectors into undefined
vectors.
Differential Revision: https://reviews.llvm.org/D102501
We have been handling filters and landingpads incorrectly all along. We
pass clauses' (catches') types to `__cxa_find_matching_catch` in JS glue
code, which returns the thrown pointer and sets the selector using
`setTempRet0()`.
We apparently have been doing the same for filters' (exception specs')
types; we pass them to `__cxa_find_matching_catch` just the same way as
clauses. And `__cxa_find_matching_catch` treats all given types as
clauses. So it is a little surprising; maybe we intended to do something
from the JS side and didn't end up doing?
So anyway, I don't think supporting exception specs in Emscripten EH is
a priority, but this can actually cause incorrect results for normal
catches when functions are inlined and the inlined spec type has a
parent-child relationship with the catch's type.
---
The below is an example of a bug that can happen when inlining and class
hierarchy is mixed. If you are busy you can skip this part:
```
struct A {};
struct B : A {};
void bar() throw (B) { throw B(); }
void foo() {
try {
bar();
} catch (A &) {
fputs ("Expected result\n", stdout);
}
}
```
In the unoptimized code, `bar`'s landingpad will have a filter for `B`
and `foo`'s landingpad will have a clause for `A`. But when `bar` is
inlined into `foo`, `foo`'s landingpad has both a filter for `B` and a
clause for `A`, and it passes the both types to
`__cxa_find_matching_catch`:
```
__cxa_find_matching_catch(typeinfo for B, typeinfo for A)
```
`__cxa_find_matching_catch` thinks both are clauses, and looks at the
first type `B`, which belongs to a filter. And the thrown type is `B`,
so it thinks the first type `B` is caught. But this makes it return an
incorrect selector, because it is supposed to catch the exception using
the second type `A`, which is a parent of `B`. As a result, the `foo` in
the example program above does not print "Expected result" but just
throws the exception to the caller. (This wouldn't have happened if `A`
and `B` are completely disjoint types, such as `float` and `int`)
Fixes https://bugs.llvm.org/show_bug.cgi?id=50357.
Reviewed By: dschuff, kripken
Differential Revision: https://reviews.llvm.org/D102795
llvm::Any::TypeId::Id relies on the uniqueness of the address of a static
variable defined in a template function. hidden visibility implies vague linkage
for that variable, which does not guarantee the uniqueness of the address across
a binary and a shared library. This totally breaks the implementation of
llvm::Any.
Ideally, setting visibility to llvm::Any::TypeId::Id should be enough,
unfortunately this doesn't work as expected and we lack time (before 12.0.1
release) to understand why setting the visibility to llvm::Any does work.
See https://gcc.gnu.org/wiki/Visibility and
https://gcc.gnu.org/onlinedocs/gcc/Vague-Linkage.html
for more information on that topic.
Differential Revision: https://reviews.llvm.org/D101972
bswap.v2i16 + sitofp in LLVM IR generate a sequence of:
- REV32 + USHR for bswap.v2i16
- SHL + SSHR + SCVTF for sext to v2i32 and scvt
The shift instructions are excessive as noted in PR24820, and they can
be optimized to just SSHR.
Differential Revision: https://reviews.llvm.org/D102333
getSourceText could return an empty string for error cases (e.g. invalid
source locaiton), this patch makes the code more robust.
The crash did happen in our internal codebase, but unfortunately I
didn't manage to get a reproduce case. One thing I can confirm from
the core dump is that the crash is caused by calling isRawStringLiteral
on an empty Text.
Differential Revision: https://reviews.llvm.org/D102770
sleep(1) does not guaranty afterfork order.
Also relative child/parent afterfork order is not important for this test so we
can just avoid checking that.
Reviewed By: dvyukov
Differential Revision: https://reviews.llvm.org/D102810
In LAM model X86_64 will use bits 57-62 (of 0-63) as HWASAN tag.
So here we make sure the tag shift position and tag mask is correct for x86-64.
Differential Revision: https://reviews.llvm.org/D102472
If a test does not contain an " simd" but -fopenmp-simd RUN lines we can
just check that we do not create __kmpc|__tgt calls.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D101973
Currently 1 byte global object has a ridiculous 63 bytes redzone.
This patch reduces the redzone size to be less than 32 if the size of global object is less than or equal to half of 32 (the minimal size of redzone).
A 12 bytes object has a 20 bytes redzone, a 20 bytes object has a 44 bytes redzone.
Reviewed By: MaskRay, #sanitizers, vitalybuka
Differential Revision: https://reviews.llvm.org/D102469
The current implementation has several key limitations and weirdness, e.g local reproducers don't support dynamic pass pipelines, error messages don't include the passes that failed, etc. This revision refactors the implementation to support more use cases, and also be much cleaner.
The main change in this revision, aside from moving the implementation out of Pass.cpp and into its own file, is the addition of a crash recovery pass instrumentation. For local reproducers, this instrumentation handles setting up the recovery context before executing each pass. For global reproducers, the instrumentation is used to provide a more detailed error message, containing information about which passes are running and on which operations.
Example of new message:
```
error: Failures have been detected while processing an MLIR pass pipeline
note: Pipeline failed while executing [`TestCrashRecoveryPass` on 'module' operation: @foo]: reproducer generated at `crash-recovery.mlir.tmp`
```
Differential Revision: https://reviews.llvm.org/D101854
This flag will print the IR after a pass only in the case where the pass failed. This can be useful to more easily view the invalid IR, without needing to print after every pass in the pipeline.
Differential Revision: https://reviews.llvm.org/D101853
`clang -fpic -fno-semantic-interposition` may set dso_local on variables for -fpic.
GCC folks consider there are 'address interposition' and 'semantic interposition',
and 'disabling semantic interposition' can optimize function calls but
cannot change variable references to use local aliases
(https://gcc.gnu.org/bugzilla/show_bug.cgi?id=100483).
This patch removes dso_local for variables in
`clang -fpic -fno-semantic-interposition` mode so that the built shared objects can
work with copy relocations. Building llvm-project tiself with
-fno-semantic-interposition (D102453) should now be safe with trunk Clang.
Example:
```
// a.c
int var;
int *addr() { return var; }
// old: cannot be interposed
movslq .Lvar$local(%rip), %rax
// new: can be interposed
movq var@GOTPCREL(%rip), %rax
movslq (%rax), %rax
```
The local alias lowering for `GlobalVariable`s is kept in case there is a
future option allowing local aliases.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D102583
satisfaction.
Previously we used the rules for constant folding in a non-constant
context, meaning that we'd incorrectly accept foldable non-constant
expressions and that std::is_constant_evaluated() would evaluate to
false.
To track security issues, we're starting with the chromium bug tracker
(using the llvm project there).
We considered using Github Security Advisories. However, they are
currently intended as a way for project owners to publicize their
security advisories, and aren't well-suited to reporting issues.
This also moves the issue-reporting paragraph to the beginning of the
document, in part to make it more discoverable, in part to allow the
anchor-linking to actually display the paragraph at the top of the page.
Note that this doesn't update the concrete list of security-sensitive
areas, which is still an open item. When we do, we may want to move the
list of security-sensitive areas next to the issue-reporting paragraph
as well, as it seems like relevant information needed in the reporting
process.
Finally, when describing the discission medium, this splits the topics
discussed into two: the concrete security issues, discussed in the
issue tracker, and the logistics of the group, in our mailing list,
as patches on public lists, and in the monthly sync-up call.
While there, add a SECURITY.md page linking to the relevant paragraph.
Differential Revision: https://reviews.llvm.org/D100873