Prior to this change sub-register index names are assumed to be lower
case (but they are printed with original casing). This means that if a
target has some upper case characters in its sub-register names then
mir-export directly followed by mir-import is not possible. This also
means that sub-register indices currently are (and will continue to be)
slightly inconsistent with register names which are printed and assumed
to be lower case.
As the current textual representation of mir has a few inconsistencies
in this area it is a bit arbitrary how to address the matter. This
change is towards the direction that we feel is most correct (i.e. case
sensitivity).
Differential Revision: https://reviews.llvm.org/D61499
llvm-svn: 360318
The PrologEpilogInserter need to insert a DW_OP_deref_size before
prepending a memory location expression to an already implicit
expression to avoid having the existing expression act on the memory
address instead of the value behind it.
The reason for using DW_OP_deref_size and not plain DW_OP_deref is that
big-endian targets need to read the right size as simply truncating a
larger read would yield the wrong result (LSB bytes are not at the lower
address).
This re-commit fixes issues reported in the first one. Namely deref was
inserted under wrong conditions and additionally the deref_size argument
was incorrectly encoded.
Differential Revision: https://reviews.llvm.org/D59687
llvm-svn: 359535
It causes clang to crash while building Chromium. See https://crbug.com/952230
for reproducer.
> The PrologEpilogInserter need to insert a DW_OP_deref_size before
> prepending a memory location expression to an already implicit
> expression to avoid having the existing expression act on the memory
> address instead of the value behind it.
>
> The reason for using DW_OP_deref_size and not plain DW_OP_deref is that
> big-endian targets need to read the right size as simply truncating a
> larger read would yield the wrong result (LSB bytes are not at the lower
> address).
>
> Differential Revision: https://reviews.llvm.org/D59687
llvm-svn: 358281
The PrologEpilogInserter need to insert a DW_OP_deref_size before
prepending a memory location expression to an already implicit
expression to avoid having the existing expression act on the memory
address instead of the value behind it.
The reason for using DW_OP_deref_size and not plain DW_OP_deref is that
big-endian targets need to read the right size as simply truncating a
larger read would yield the wrong result (LSB bytes are not at the lower
address).
Differential Revision: https://reviews.llvm.org/D59687
llvm-svn: 358268
There are various places in LLVM where the definition of StackID is not
properly honoured, for example in PEI where objects with a StackID > 0 are
allocated on the default stack (StackID0). This patch enforces that PEI
only considers allocating objects to StackID 0.
Reviewers: arsenm, thegameg, MatzeB
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D60062
llvm-svn: 357460
The AMDGPU implementation of getReservedRegs depends on
MachineFunctionInfo fields that are parsed from the YAML section. This
was reserving the wrong register since it was setting the reserved
regs before parsing the correct one.
Some tests were relying on the default reserved set for the assumed
default calling convention.
llvm-svn: 357083
This has been a very painful missing feature that has made producing
reduced testcases difficult. In particular the various registers
determined for stack access during function lowering were necessary to
avoid undefined register errors in a large percentage of
cases. Implement a subset of the important fields that need to be
preserved for AMDGPU.
Most of the changes are to support targets parsing register fields and
properly reporting errors. The biggest sort-of bug remaining is for
fields that can be initialized from the IR section will be overwritten
by a default initialized machineFunctionInfo section. Another
remaining bug is the machineFunctionInfo section is still printed even
if empty.
llvm-svn: 356215
Every time a physical register reference was parsed, this would
initialize a string map for every register in in target, and discard
it for the next. The same applies for the other fields initialized
from target information.
Follow along with how the function state is tracked, and add a new
tracking class for target information.
The string->register class/register bank for some reason were kept
separately, so track them in the same place.
llvm-svn: 355970
Recommit r352791 after tweaking DerivedTypes.h slightly, so that gcc
doesn't choke on it, hopefully.
Original Message:
The FunctionCallee type is effectively a {FunctionType*,Value*} pair,
and is a useful convenience to enable code to continue passing the
result of getOrInsertFunction() through to EmitCall, even once pointer
types lose their pointee-type.
Then:
- update the CallInst/InvokeInst instruction creation functions to
take a Callee,
- modify getOrInsertFunction to return FunctionCallee, and
- update all callers appropriately.
One area of particular note is the change to the sanitizer
code. Previously, they had been casting the result of
`getOrInsertFunction` to a `Function*` via
`checkSanitizerInterfaceFunction`, and storing that. That would report
an error if someone had already inserted a function declaraction with
a mismatching signature.
However, in general, LLVM allows for such mismatches, as
`getOrInsertFunction` will automatically insert a bitcast if
needed. As part of this cleanup, cause the sanitizer code to do the
same. (It will call its functions using the expected signature,
however they may have been declared.)
Finally, in a small number of locations, callers of
`getOrInsertFunction` actually were expecting/requiring that a brand
new function was being created. In such cases, I've switched them to
Function::Create instead.
Differential Revision: https://reviews.llvm.org/D57315
llvm-svn: 352827
This reverts commit f47d6b38c7 (r352791).
Seems to run into compilation failures with GCC (but not clang, where
I tested it). Reverting while I investigate.
llvm-svn: 352800
The FunctionCallee type is effectively a {FunctionType*,Value*} pair,
and is a useful convenience to enable code to continue passing the
result of getOrInsertFunction() through to EmitCall, even once pointer
types lose their pointee-type.
Then:
- update the CallInst/InvokeInst instruction creation functions to
take a Callee,
- modify getOrInsertFunction to return FunctionCallee, and
- update all callers appropriately.
One area of particular note is the change to the sanitizer
code. Previously, they had been casting the result of
`getOrInsertFunction` to a `Function*` via
`checkSanitizerInterfaceFunction`, and storing that. That would report
an error if someone had already inserted a function declaraction with
a mismatching signature.
However, in general, LLVM allows for such mismatches, as
`getOrInsertFunction` will automatically insert a bitcast if
needed. As part of this cleanup, cause the sanitizer code to do the
same. (It will call its functions using the expected signature,
however they may have been declared.)
Finally, in a small number of locations, callers of
`getOrInsertFunction` actually were expecting/requiring that a brand
new function was being created. In such cases, I've switched them to
Function::Create instead.
Differential Revision: https://reviews.llvm.org/D57315
llvm-svn: 352791
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
- Reapply changes intially introduced in r343089
- The archtecture info is no longer loaded whenever a DWARFContext is created
- The runtimes libraries (santiziers) make use of the dwarf context classes but
do not intialise the target info
- The architecture of the object can be obtained without loading the target info
- Adding a method to the dwarf context to get this information and multiplex the
string printing later on
Differential Revision: https://reviews.llvm.org/D55774
llvm-svn: 349472
Summary:
Sometimes MIR-level passes create DILocations that were not present in the
LLVM-IR. For example, it may merge two DILocations together to produce a
DILocation that points to line 0.
Previously, the address of these DILocations were printed which prevented the
MIR from being read back into LLVM. With this patch, DILocations will use
metadata references where possible and fall back on serializing them inline like so:
MOV32mr %stack.0.x.addr, 1, _, 0, _, %0, debug-location !DILocation(line: 1, scope: !15)
Reviewers: aprantl, vsk, arphaman
Reviewed By: aprantl
Subscribers: probinson, llvm-commits
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D55243
llvm-svn: 349035
The debug-use flag must be set exactly for uses on DBG_VALUEs. This is
so obvious that it can be trivially inferred while parsing. This will
reduce noise when printing while omitting an information that has little
value to the user.
The parser will keep recognizing the flag for compatibility with old
`.mir` files.
Differential Revision: https://reviews.llvm.org/D53903
llvm-svn: 345671
Summary:
Before this change, LLVM would always describe locals on the stack as
being relative to some specific register, RSP, ESP, EBP, ESI, etc.
Variables in stack memory are pretty common, so there is a special
S_DEFRANGE_FRAMEPOINTER_REL symbol for them. This change uses it to
reduce the size of our debug info.
On top of the size savings, there are cases on 32-bit x86 where local
variables are addressed from ESP, but ESP changes across the function.
Unlike in DWARF, there is no FPO data to describe the stack adjustments
made to push arguments onto the stack and pop them off after the call,
which makes it hard for the debugger to find the local variables in
frames further up the stack.
To handle this, CodeView has a special VFRAME register, which
corresponds to the $T0 variable set by our FPO data in 32-bit. Offsets
to local variables are instead relative to this value.
This is part of PR38857.
Reviewers: hans, zturner, javed.absar
Subscribers: aprantl, hiraditya, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D52217
llvm-svn: 343543
- Add fix so that all code paths that create DWARFContext
with an ObjectFile initialise the target architecture in the context
- Add an assert that the Arch is known in the Dwarf CallFrameString method
llvm-svn: 343317
This caused the DebugInfo/Sparc/gnu-window-save.ll test to fail.
> Functions that have signed return addresses need additional dwarf support:
> - After signing the LR, and before authenticating it, the LR register is in a
> state the is unusable by a debugger or unwinder
> - To account for this a new directive, .cfi_negate_ra_state, is added
> - This directive says the signed state of the LR register has now changed,
> i.e. unsigned -> signed or signed -> unsigned
> - This directive has the same CFA code as the SPARC directive GNU_window_save
> (0x2d), adding a macro to account for multiply defined codes
> - This patch matches the gcc implementation of this support:
> https://patchwork.ozlabs.org/patch/800271/
>
> Differential Revision: https://reviews.llvm.org/D50136
llvm-svn: 343103
Functions that have signed return addresses need additional dwarf support:
- After signing the LR, and before authenticating it, the LR register is in a
state the is unusable by a debugger or unwinder
- To account for this a new directive, .cfi_negate_ra_state, is added
- This directive says the signed state of the LR register has now changed,
i.e. unsigned -> signed or signed -> unsigned
- This directive has the same CFA code as the SPARC directive GNU_window_save
(0x2d), adding a macro to account for multiply defined codes
- This patch matches the gcc implementation of this support:
https://patchwork.ozlabs.org/patch/800271/
Differential Revision: https://reviews.llvm.org/D50136
llvm-svn: 343089
Summary: Initial support for nsw, nuw and exact flags in MI
Reviewers: spatel, hfinkel, wristow
Reviewed By: spatel
Subscribers: nlopes
Differential Revision: https://reviews.llvm.org/D51738
llvm-svn: 341996
1. Change the software pipeliner to use unknown size instead of dropping
memory operands. It used to do it before, but MachineInstr::mayAlias
did not handle it correctly.
2. Recognize UnknownSize in MachineInstr::mayAlias.
3. Print and parse UnknownSize in MIR.
Differential Revision: https://reviews.llvm.org/D50339
llvm-svn: 340208
well as MIR parsing support for `MCSymbol` `MachineOperand`s.
The only real way to test pre- and post-instruction symbol support is to
use them in operands, so I ended up implementing that within the patch
as well. I can split out the operand support if folks really want but it
doesn't really seem worth it.
The functional implementation of pre- and post-instruction symbols is
now *completely trivial*. Two tiny bits of code in the (misnamed)
AsmPrinter. It should be completely target independent as well. We emit
these exactly the same way as we emit basic block labels. Most of the
code here is to give full dumping, MIR printing, and MIR parsing support
so that we can write useful tests.
The MIR parsing of MC symbol operands still isn't 100%, as it forces the
symbols to be non-temporary and non-local symbols with names. However,
those names often can encode most (if not all) of the special semantics
desired, and unnamed symbols seem especially annoying to serialize and
de-serialize. While this isn't perfect or full support, it seems plenty
to write tests that exercise usage of these kinds of operands.
The MIR support for pre-and post-instruction symbols was quite
straightforward. I chose to print them out in an as-if-operand syntax
similar to debug locations as this seemed the cleanest way and let me
use nice introducer tokens rather than inventing more magic punctuation
like we use for memoperands.
However, supporting MIR-based parsing of these symbols caused me to
change the design of the symbol support to allow setting arbitrary
symbols. Without this, I don't see any reasonable way to test things
with MIR.
Differential Revision: https://reviews.llvm.org/D50833
llvm-svn: 339962
a generically extensible collection of extra info attached to
a `MachineInstr`.
The primary change here is cleaning up the APIs used for setting and
manipulating the `MachineMemOperand` pointer arrays so chat we can
change how they are allocated.
Then we introduce an extra info object that using the trailing object
pattern to attach some number of MMOs but also other extra info. The
design of this is specifically so that this extra info has a fixed
necessary cost (the header tracking what extra info is included) and
everything else can be tail allocated. This pattern works especially
well with a `BumpPtrAllocator` which we use here.
I've also added the basic scaffolding for putting interesting pointers
into this, namely pre- and post-instruction symbols. These aren't used
anywhere yet, they're just there to ensure I've actually gotten the data
structure types correct. I'll flesh out support for these in
a subsequent patch (MIR dumping, parsing, the works).
Finally, I've included an optimization where we store any single pointer
inline in the `MachineInstr` to avoid the allocation overhead. This is
expected to be the overwhelmingly most common case and so should avoid
any memory usage growth due to slightly less clever / dense allocation
when dealing with >1 MMO. This did require several ergonomic
improvements to the `PointerSumType` to reasonably support the various
usage models.
This also has a side effect of freeing up 8 bits within the
`MachineInstr` which could be repurposed for something else.
The suggested direction here came largely from Hal Finkel. I hope it was
worth it. ;] It does hopefully clear a path for subsequent extensions
w/o nearly as much leg work. Lots of thanks to Reid and Justin for
careful reviews and ideas about how to do all of this.
Differential Revision: https://reviews.llvm.org/D50701
llvm-svn: 339940
- Avoid duplication of regmask size calculation.
- Simplify allocateRegisterMask() call.
- Rename allocateRegisterMask() to allocateRegMask() to be consistent
with naming in MachineOperand.
llvm-svn: 337986
Summary:
Patch r323922 changed the sigil for physical registers to '$', instead of '%'.
An error message was missed during this change, and reports the wrong sigil.
This patch corrects that diagnostic and the tests that check that error string.
Reviewers: zer0, bjope
Reviewed By: bjope
Subscribers: bjope, thegameg, plotfi, llvm-commits
Differential Revision: https://reviews.llvm.org/D48086
llvm-svn: 335066
We already output true and false in the printer, but the parser isn't able to
read it.
Differential Revision: https://reviews.llvm.org/D47424
llvm-svn: 333970
Summary:
The current code cannot handle register class names like 'i32', which is
a valid register class name in WebAssembly. This patch removes special
handling for integer/scalar/pointer type parsing and treats them as
normal identifiers.
Reviewers: thegameg
Subscribers: jfb, dschuff, sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D45948
llvm-svn: 331586
Summary:
Machine Instruction flags for fast math support and MIR print support
Reviewers: spatel, arsenm
Reviewed By: arsenm
Subscribers: wdng
Differential Revision: https://reviews.llvm.org/D45781
llvm-svn: 331417
Debug var, expr and loc were only supported for non-fixed stack objects.
This patch adds the following fields to the "fixedStack:" entries, and
renames the ones from "stack:" to:
* debug-info-variable
* debug-info-expression
* debug-info-location
Differential Revision: https://reviews.llvm.org/D46032
llvm-svn: 330859
MFI.LocalFrameSize was not serialized.
It is usually set from LocalStackSlotAllocation, so if that pass doesn't
run it is impossible do deduce it from the stack objects. Until now, this
information was lost.
llvm-svn: 329382
Nothing prevents us from having both frame-setup and frame-destroy on
the same instruction.
When merging:
* frame-setup OPCODE1
* frame-destroy OPCODE2
into
* frame-setup frame-destroy OPCODE3
we want to be able to print and parse both flags.
llvm-svn: 327442
FailedISel MachineFunction property is part of the CodeGen pipeline
state as much as every other property, notably, Legalized,
RegBankSelected, and Selected. Let's make that part of the state also
serializable / de-serializable, so if GlobalISel aborts on some of the
functions of a large module, but not the others, it could be easily seen
and the state of the pipeline could be maintained through llc's
invocations with -stop-after / -start-after.
To make MIR printable and generally to not to break it too much too
soon, this patch also defers cleaning up the vreg -> LLT map until
ResetMachineFunctionPass.
To make MIR with FailedISel: true also machine verifiable, machine
verifier is changed so it treats a MIR-module as non-regbankselected and
non-selected if there is FailedISel property set.
Reviewers: qcolombet, ab
Reviewed By: dsanders
Subscribers: javed.absar, rovka, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D42877
llvm-svn: 326343
Discussed here:
http://lists.llvm.org/pipermail/llvm-dev/2018-January/120320.html
In preparation for adding support for named vregs we are changing the sigil for
physical registers in MIR to '$' from '%'. This will prevent name clashes of
named physical register with named vregs.
llvm-svn: 323922
Sometimes users do not specify data layout in LLVM assembly and let llc set the
data layout by target triple after loading the LLVM assembly.
Currently the parser checks alloca address space no matter whether the LLVM
assembly contains data layout definition, which causes false alarm since the
default data layout does not contain the correct alloca address space.
The parser also calls verifier to check debug info and updating invalid debug
info. Currently there is no way to let the verifier to check debug info only.
If the verifier finds non-debug-info issues the parser will fail.
For llc, the fix is to remove the check of alloca addr space in the parser and
disable updating debug info, and defer the updating of debug info and
verification to be after setting data layout of the IR by target.
For other llvm tools, since they do not override data layout by target but
instead can override data layout by a command line option, an argument for
overriding data layout is added to the parser. In cases where data layout
overriding is necessary for the parser, the data layout can be provided by
command line.
Differential Revision: https://reviews.llvm.org/D41832
llvm-svn: 323826