This patch aims to reduce a lot of the boilerplate around adding new subtarget
features. From the SubtargetFeatures tablegen definitions, a series of calls to
the macro GET_SUBTARGETINFO_MACRO are generated in
ARM/AArch64GenSubtargetInfo.inc. ARMSubtarget/AArch64Subtarget can then use
this macro to define bool members and the corresponding getter methods.
Some naming inconsistencies have been fixed to allow this, and one unused
member removed.
This implementation only applies to boolean members; in future both BitVector
and enum members could also be generated.
Differential Revision: https://reviews.llvm.org/D120906
This avoids false positive verification failures if the condition
is not literally true/false, but SCEV still makes use of the fact
that a loop is not reachable through more complex reasoning.
Fixes https://github.com/llvm/llvm-project/issues/54434.
On darwin, we don't completely suppress the signal used to interrupt the
inferior. The underlying read syscall returns EINTR, which causes premature
termination of the input loop.
Work around that by hand-rolling an EINTR-resistant version of getline.
The options listed in ClangFormat.rst lag behind those output by the
-help command line option. Specifically, these are missing.
--files
--qualifier-alignment
Fixes#54418
Reviewed By: MyDeveloperDay, HazardyKnusperkeks
Differential Revision: https://reviews.llvm.org/D121890
This patch adds support for lowering of the `ior` intrinsic from
Fortran to the FIR dialect of MLIR.
This is part of the upstreaming effort from the `fir-dev` branch in [1].
[1] https://github.com/flang-compiler/f18-llvm-project
Differential Revision: https://reviews.llvm.org/D121928
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
This patch adds single-bit and bit-counting ops to list of sign-extending ops.
A single-bit write propagates sign-extendedness if it's not in the sign-bits.
Bit extraction and bit counting always outputs a small number, so sign-extended.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D121152
This patch adds support for lowering of the `{l|u}bound` intrinsics from
Fortran to the FIR dialect of MLIR. Note that `ubound` is already
supported, but the test was missing (added here).
This is part of the upstreaming effort from the `fir-dev` branch in [1].
[1] https://github.com/flang-compiler/f18-llvm-project
Differential Revision: https://reviews.llvm.org/D121926
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Peter Steinfeld <psteinfeld@nvidia.com>
This patch adds support for lowering of the `merge` intrinsics from
Fortran to the FIR dialect of MLIR.
This is part of the upstreaming effort from the `fir-dev` branch in [1].
[1] https://github.com/flang-compiler/f18-llvm-project
Differential Revision: https://reviews.llvm.org/D121924
Co-authored-by: Valentin Clement <clementval@gmail.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Mark Leair <leairmark@gmail.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
These intrinsics returns the distance to the nearest real number and
their reciprocal. They are lowered to flang runtime calls.
This is part of the upstreaming effort from the fir-dev branch in [1].
[1] https://github.com/flang-compiler/f18-llvm-project
Reviewed By: clementval
Differential Revision: https://reviews.llvm.org/D121832
Co-authored-by: Mark Leair <leairmark@gmail.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
This changes MemorySSA to be constructed in unoptimized form.
MemorySSA::ensureOptimizedUses() can be called to optimize all
uses (once). This should be done by passes where having optimized
uses is beneficial, either because we're going to query all uses
anyway, or because we're doing def-use walks.
This should help reduce the compile-time impact of MemorySSA for
some use cases (the reason why I started looking into this is
D117926), which can avoid optimizing all uses upfront, and instead
only optimize those that are actually queried.
Actually, we have an existing use-case for this, which is EarlyCSE.
Disabling eager use optimization there gives a significant
compile-time improvement, because EarlyCSE will generally only query
clobbers for a subset of all uses (this change is not included in
this patch).
Differential Revision: https://reviews.llvm.org/D121381
LoopSimplifyCFG may process loops that are not in
loop-simplify/canonical form. For loops not in canonical form, exit
blocks may be reachable from non-loop blocks and we cannot consider them
as dead if they only are not reachable from the loop itself.
Unfortunately the smallest test I could come up with requires running
multiple passes:
-passes='loop-mssa(loop-instsimplify,loop-simplifycfg,simple-loop-unswitch)'
The reason is that loops are canonicalized at the beginning of loop
pipelines, so a later transform has to break canonical form in a way
that breaks LoopSimplifyCFG's dead-exit analysis.
Alternatively we could try to require all loop passes to maintain
canonical form. That in turn would also require additional verification.
Fixes#54023, #49931.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D121925
Remove tables from X86MCPlusBuilder, make use of llvm::X86 mnemonic tables.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D121573
This patch refactors the current coalesce implementation. It introduces
the `SetCoalescer`, a class in which all coalescing functionality lives.
The main advantage over the old design is the fact that the vectors of
constraints do not have to be passed around, but are implemented as
private fields of the SetCoalescer. This will become especially
important once more inequality types are introduced.
Reviewed By: arjunp
Differential Revision: https://reviews.llvm.org/D121364
D120762 accidentally moved the interrupt check into the block which was
reading stdio. This meant that a ^C only took effect after a regular
character has been pressed.
This patch fixes that and adds a (pexpect) test.
Differential Revision: https://reviews.llvm.org/D121912
The call is useless, as any modules loaded there will be removed in
ResolveExecutableModule. Modules will be reloaded again through the
GetLoadedModuleList call in DYLDRendezvous.cpp.
This patch adds more lowering for array expressions.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D121952
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
The functionality (and llvm-objcopy's corresponding documentation) was
added in
5ad0103d8a.
It looks like the llvm-strip docs to match were missed.
Reviewed by: gbreynoo
Differential Revision: https://reviews.llvm.org/D121902
When generating a all-one mask value whose bitwidth is larger than 64, signed extension should be used rather then zero extension.
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D120865
-Rename Mode*Bit to Is*Bit to match X86Subtarget.
-Rename FeatureLAHFSAHF to FeatureLAFHSAFH64 to match X86Subtarget.
-Use consistent capitalization
Reviewed By: skan
Differential Revision: https://reviews.llvm.org/D121975
PowerPC is lacking tests checking `_Atomic` alignment in cfe. Adding these tests since we're going to make change to align with gcc on Linux.
Reviewed By: hubert.reinterpretcast, jsji
Differential Revision: https://reviews.llvm.org/D121441
Compiler only emits a comment for `Int_MemBarrier`, so it should
be marked as a meta-instruction, which can help improve accuracy
of debug location.
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D121879
An instruction is a meta-instruction if it doesn't produce any output
in the form of executable instructions. So in the concept, a
meta-instruction does not have to be target independent.
Before this patch, `isMetaInstruction` is implemented by checking the
opcode of the instruction, add we have no way to add target dependent
opcode to the list, which does not make sense.
After this patch, a bit `isMeta` is added for class `Instruction` in
tablegen, which is used to indicate whether it's a meta instruction.
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D121600
This patch tries to sink instructions when they are only used in a successor block.
This is a further enhancement patch based on Anna's commit:
D109700, which allows sinking an instruction having multiple uses in a single user.
In this patch, sink instructions with multiple users in a single successor block will be supported.
It could fix a known issue from rust:
https://github.com/rust-lang/rust/issues/51346#issuecomment-394443610
Reviewed By: nikic, reames
Differential Revision: https://reviews.llvm.org/D121585
The platform independent file implementation is not an entrypoint so it
cannot be excluded via the entrypoints.txt file. Hence, we need a
special treatment to exclude it from the build.
Reviewed By: michaelrj
Differential Revision: https://reviews.llvm.org/D121947
Changes in [P0896](https://wg21.link/p0896):
- add `disable_sized_sentinel_for`;
- add `iter_move` and `iter_swap`;
- add a `requires` clause to the `operator->`;
- add `iterator_concept`;
- check that the `Iterator` template parameter is a bidirectional
iterator;
- add constraints to all comparison operators;
- change the definitions of `iterator_category`, `value_type`,
`difference_type` and `reference` (changes to `iterator_category` were
already implemented).
Also add a few forgotten things to the `reverse_iterator` synopsis
(notably the spaceship operator).
Differential Revision: https://reviews.llvm.org/D120180
Prior to this change the __support_cpp_array_ref target's only dependency was libc_root.
but it #includes "TypeTraits.h" and Array.h for that matter.
These dependencies matter when building in distributed build systems and the relevant
files must be know for the distributed build to ship them to the executor.
Differential Revision: https://reviews.llvm.org/D121974
RISCVISelDAGToDAG's selectImm uses RISCVTargetLowering::getAddr
(specifically the ConstantPoolSDNode) as of 41454ab256 ("[RISCV] Use
constant pool for large integers"), but nothing explicitly instantiates
any of the templates, the only reason they exist is because of the
various lowering methods in RISCVISelLowering.cpp that themselves use
the methods. However, with inlining, those can end up not existing as
real functions and thus not be exported, leading to link errors. Up
until now this hasn't happened, but for whatever reason D121654 has
triggered this on the sanitizer-ppc64be-linux buildbot, giving:
../../../../lib/libLLVMRISCVCodeGen.a(RISCVISelDAGToDAG.cpp.o): In function `selectImm(llvm::SelectionDAG*, llvm::SDLoc const&, llvm::MVT, long, llvm::RISCVSubtarget const&)':
RISCVISelDAGToDAG.cpp:(.text._ZL9selectImmPN4llvm12SelectionDAGERKNS_5SDLocENS_3MVTElRKNS_14RISCVSubtargetE+0x3d8): undefined reference to `llvm::SDValue llvm::RISCVTargetLowering::getAddr<llvm::ConstantPoolSDNode>(llvm::ConstantPoolSDNode*, llvm::SelectionDAG&, bool) const'
collect2: error: ld returned 1 exit status
Fix this by explicitly instantiating getAddr in its four different forms
so separate translation units can reliably use it.
Fixes: 41454ab256 ("[RISCV] Use constant pool for large integers")