This patch is difficult to test in isolation, so a subsequent patch will test
further.
Patch by Daniel Stewart <stewartd@codeaurora.org>!
Phabricator Revision: http://reviews.llvm.org/D5377
llvm-svn: 218418
The run-time alias check places code that involves the base pointer at the
beginning of the SCoP. This breaks if the base pointer is defined inside the
SCoP. Hence, we can only create a run-time alias check if we are sure the base
pointer is not an instruction defined inside the scop. If it is we refuse to
handle the SCoP.
This commit should unbreak most of our current LNT failures.
Differential Revision: http://reviews.llvm.org/D5483
llvm-svn: 218412
For biendian targets like ARM and AArch64, it is useful to have the
output of the llvm-dwarfdump and llvm-objdump report the endianness
used when the object files were generated.
Patch by Charlie Turner.
llvm-svn: 218408
This change fixes the ARM and AArch64 relocation visitors in
RelocVisitor. They were unconditionally assuming the object data are
little-endian. Tests have been added to ensure that the
llvm-dwarfdump utility does not crash when processing big-endian
object files.
Patch by Charlie Turner.
llvm-svn: 218407
This change replaces the brittle if/else chain of string comparisons
with a switch statement on the detected target triple, removing the
need for testing arbitrary architecture names returned from
getFileFormatName, whose primary purpose seems to be for display
(user-interface) purposes. The visitor now takes a reference to the
object file, rather than its arbitrary file format name to figure out
whether the file is a 32 or 64-bit object file and what the detected
target triple is.
A set of tests have been added to help show that the refactoring processes
relocations for the same targets as the original code.
Patch by Charlie Turner.
llvm-svn: 218406
See thread started here for motivation:
http://lists.cs.uiuc.edu/pipermail/lldb-dev/2014-September/005225.html
This change enables the ability to set breakpoints in ccache-based and executables that
make use of preprocessed source files. This ability existed in lldb before, but was off
by default.
Change by Doug Snyder.
llvm-svn: 218405
Use the same environment when invoking llvm-config from lit.cfg as
will be used when running tests, so that ASAN_OPTIONS, INCLUDE, etc.
are present.
llvm-svn: 218404
Use the same environment when invoking llvm-config from lit.cfg as
will be used when running tests, so that ASAN_OPTIONS, INCLUDE, etc.
are present.
llvm-svn: 218403
Summary:
This adds the ClangTidyOptions::User field and fills it from the USER
or the USERNAME environment variable, if possible. The FileOptionsProvider now
takes "default" options instead of "fallback" options, as it now uses these when
an option is not set in the configuration file (one exception is the checks
list).
Reviewers: bkramer, klimek
Reviewed By: klimek
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D5440
llvm-svn: 218402
into unblended shuffles and a blend.
This is the consistent fallback for the lowering paths that have fast
blend operations available, and its getting quite repetitive.
No functionality changed.
llvm-svn: 218399
lib.exe prints a warning if a symbol in a module definition file has
both the PRIVATE attribute and an ordinal like this.
EXPORTS
foo @1 PRIVATE
This patch suppresses that.
llvm-svn: 218395
Fixes PR21027. The MIDL compiler produces code that does this.
If we wanted to improve the warning, I think we could do this:
void __stdcall f(); // Don't warn without -Wstrict-prototypes.
void g() {
f(); // Might warn, the user probably meant for f to take no args.
f(1, 2, 3); // Warn, we have no idea what args f takes.
f(1); // Error, this is insane, one of these calls is broken.
}
Reviewers: thakis
Differential Revision: http://reviews.llvm.org/D5481
llvm-svn: 218394
This reverts commit faac033f7364bb4226e22c8079c221c96af10d02.
The test depends on all targets to be enabled in llc in order to pass,
and needs to be rewritten/refactored to not have that dependency.
llvm-svn: 218393
For biendian targets like ARM and AArch64, it is useful to have the
output of the llvm-dwarfdump and llvm-objdump report the endianness
used when the object files were generated.
Patch by Charlie Turner.
llvm-svn: 218391
Most of the debug info emission is powered essentially from function
definitions - if we emit the definition of a function, we emit the types
of its parameters, the members of those types, and so on and so forth.
For types that aren't referenced even indirectly due to this - because
they only appear in temporary expressions, not in any named variable, we
need to explicitly emit/add them as is done here. This is not the only
case of such code, and we might want to consider handling "void
func(void*); ... func(new T());" (currently debug info for T is not
emitted) at some point, though GCC doesn't. There's a much broader
solution to these issues, but it's a lot of work for possibly marginal
gain (but might help us improve the default -fno-standalone-debug
behavior to be even more aggressive in some places). See the original
review thread for more details.
Patch by jyoti allur (jyoti.yalamanchili@gmail.com)!
Differential Revision: http://reviews.llvm.org/D2498
llvm-svn: 218390
This change fixes the ARM and AArch64 relocation visitors in
RelocVisitor. They were unconditionally assuming the object data are
little-endian. Tests have been added to ensure that the
llvm-dwarfdump utility does not crash when processing big-endian
object files.
Patch by Charlie Turner.
llvm-svn: 218389
This change replaces the brittle if/else chain of string comparisons
with a switch statement on the detected target triple, removing the
need for testing arbitrary architecture names returned from
getFileFormatName, whose primary purpose seems to be for display
(user-interface) purposes. The visitor now takes a reference to the
object file, rather than its arbitrary file format name to figure out
whether the file is a 32 or 64-bit object file and what the detected
target triple is.
A set of tests have been added to help show that the refactoring processes
relocations for the same targets as the original code.
Patch by Charlie Turner.
llvm-svn: 218388
The doFinalization method checks that the LoopToAliasSetMap is
empty. LICM populates that map as it runs through the loop nest,
deleting the entries for child loops as it goes. However, if a child
loop is deleted by another pass (e.g. unrolling) then the loop will
never be deleted from the map because LICM walks the loop nest to
find entries it can delete.
The fix is to delete the loop from the map and free the alias set
when the loop is deleted from the loop nest.
Differential Revision: http://reviews.llvm.org/D5305
llvm-svn: 218387
If it's safe to clobber the condition flags, we can do a few extra things:
it's then possible to reset the base register writeback using a SUBS, so
we can try to merge even if the base register isn't dead after the merged
instruction.
This is effectively a (heavily bug-fixed) rewrite of r208992.
llvm-svn: 218386
v7M only allows the 16-bit encoding of the 'cps' (Change Processor
State) instruction, and does not have the 32-bit encoding which is
valid from v6T2 onwards.
llvm-svn: 218382
A record which contains a flexible array member is itself a flexible
array member. A struct which contains such a record should also
consider itself to be a flexible array member.
llvm-svn: 218378
pool data being loaded into a vector register.
The comments take the form of:
# ymm0 = [a,b,c,d,...]
# xmm1 = <x,y,z...>
The []s are used for generic sequential data and the <>s are used for
specifically ConstantVector loads. Undef elements are printed as the
letter 'u', integers in decimal, and floating point values as floating
point values. Suggestions on improving the formatting or other aspects
of the display are very welcome.
My primary use case for this is to be able to FileCheck test masks
passed to vector shuffle instructions in-register. It isn't fantastic
for that (no decoding special zeroing semantics or other tricks), but it
at least puts the mask onto an instruction line that could reasonably be
checked. I've updated many of the new vector shuffle lowering tests to
leverage this in their test cases so that we're actually checking the
shuffle masks remain as expected.
Before implementing this, I tried a *bunch* of different approaches.
I looked into teaching the MCInstLower code to scan up the basic block
and find a definition of a register used in a shuffle instruction and
then decode that, but this seems incredibly brittle and complex.
I talked to Hal a lot about the "right" way to do this: attach the raw
shuffle mask to the instruction itself in some form of unencoded
operands, and then use that to emit the comments. I still think that's
the optimal solution here, but it proved to be beyond what I'm up for
here. In particular, it seems likely best done by completing the
plumbing of metadata through these layers and attaching the shuffle mask
in metadata which could have fully automatic dropping when encoding an
actual instruction.
llvm-svn: 218377
With clang, the header atomic requires __has_feature(cxx_atomic), which is only
true in c++11 mode. Because of this, when using modules in c++98 with libc++
compilation of the std module would fail without this change, PR21002.
(With gcc, only gcc4.7+ is needed, no c++11. But gcc doesn't have modules yet,
and the module.modulemap language can't express things like "this is only
required if the compiler is clang". If gcc gets module support, we'd probably
have a module.modulemap file for each compiler that libc++ supports?)
llvm-svn: 218372