such a way that if the Value being printed is standalone that we don't
assert and abort but just print ":??" for the slot number instead.
llvm-svn: 14097
initialization so we don't scan large Modules/Functions needlessly, tighten
up restrictions on what can be put in SlotMachine (no Constants that aren't
GlobalValues).
llvm-svn: 13796
This change removes the BuildBytecodeInfo flag from the SlotCalculator
class. This flag was needed to distinguish between the Bytecode/Writer
and the AsmWriter. Now that AsmWriter doesn't use SlotCalculator, we can
remove this flag and simplify some code. Also, some minor name changes
to CachedWriter.h needed to be committed (missed in previous commit).
llvm-svn: 13785
incorporating a significantly simpler "SlotMachine" into this file. The
SlotMachine is tailored for use by only the AsmWriter whose requirements
for slot numbers are vastly different than from the Bytecode/Writer. Code
change passes all Feature and Regression tests.
llvm-svn: 13784
SymbolTable will now assert if this is done. This didn't find any incorrect
usage of SymbolTable but will prevent future mistakes until Type != Value.
llvm-svn: 13755
for making Type not derive from Value. There are now separate interfaces \
for looking up, finding, and inserting Types and Values. There are also \
three separate iterator interfaces, one for type planes, one for the types \
(type type plane), and one for values within a type plane. See the \
documentation in the Header file.
llvm-svn: 13752
When looking at getelementptr instructions, make sure to use a forwarded
type. We want to do this because a DerivedType may drop its uses and then
refine its users, who may then use another user who hasn't been refined yet.
By getting the forwarded type, we always ensure that we're looking at a
Type that isn't in a halfway refined state.
Now, I should be able to put this stuff in PATypeHandle, but it doesn't work
for some reason. This should do for now.
llvm-svn: 13386
* Make contained ostream pointer, not reference
* Allow setting of that ostream via setStream()
class CachedWriter:
* setStream() in turn calls setStream() on the AssemblyWriter
llvm-svn: 13247
that does not dominate all of its users, but is in the same basic block as
its users. This class of error is what caused the mysterious CBE only
failures last night.
llvm-svn: 12979
The Verifier ensures that their parameters are of integral types and have
the correct sign, but it does not enforce any size restrictions because
such restrictions are platform dependent.
llvm-svn: 12781
prototypes, even if they don't precisely match what it would prefer to use.
This fixes: CBackend/2004-02-15-PreexistingExternals.llx compiling it into:
ltmp_0_30 = memcpy(l14_C, 4u, 17);
ltmp_1_30 = memcpy(((int *)l27_A), ((unsigned )(long)l27_B), ((int )123u));
instead of:
ltmp_0_30 = memcpy(l14_C, 4u, 17);
ltmp_1_27 = l43_memcpy(l27_A, l27_B, 123u);
Which does the wrong thing as you could imagine.
llvm-svn: 11481
initializers for constant structs and arrays take constant space, instead of
space proportinal to the number of elements. This reduces the memory usage of
the LLVM compiler by hundreds of megabytes when compiling some nasty SPEC95
benchmarks.
llvm-svn: 11470
'Constant', instead of specific subclass pointers. In the future, these will
return an instance of ConstantAggregateZero if all of the inputs are zeros.
llvm-svn: 11467
this speeds up a release llvm-as from 21.95s to 11.21s, because before it
would do an expensive traversal of the type-graph of every type resolved.
llvm-svn: 11242
consistent across the various type classes, we can factor out a LOT more
almost-identical code. Also, add a couple of temporary statistics.
llvm-svn: 11232
all of the ad-hoc storage of contained types. This allows getContainedType to
not be virtual, and allows us to entirely delete the TypeIterator class.
llvm-svn: 11230
1. The "work" was not in the assert, so it was punishing the optimized release
2. getNamedFunction is _very_ expensive in large programs. It is not designed
to be used like this, and was taking 7% of the execution time of the code
generator on perlbmk.
Since the assert "can never fail", I'm just killing it.
llvm-svn: 11214
instead of a loop that is really inefficient with large basic blocks.
This speeds up the inliner pass on the testcase in PR209 from 13.8s to 2.24s
which still isn't exactly speedy, but is a lot better. :)
llvm-svn: 11105
Basically we store floating point values as their integral components, instead of relying
on the semantics of floating point < to differentiate between values. This is likely to
make the map search be faster anyway.
llvm-svn: 11064
out that the problem was actually the writer writing out a 'null' value
because it didn't normalize it. This fixes:
test/Regression/Assembler/2004-01-22-FloatNormalization.ll
llvm-svn: 10967
fact "profitable" to do so. This makes compactification "free" for small
programs (ie, it is completely disabled) and even helps large programs by
not having to encode pointless compactification planes.
On 176.gcc, this saves 50K from the bytecode file, which is, alas only
a couple percent.
This concludes my head bashing against the bytecode format, at least for
now.
llvm-svn: 10922
the bytecode file for 176.gcc by about 200K (10%), and 254.gap by about 167K,
a 25% reduction. There is still a lot of room for improvement in the encoding
of the compaction table.
llvm-svn: 10913
Since this really only makes sense for these two, change hte instance variable
to reflect whether we are writing a bytecode file or not. This makes it
reasonable to add bcwriter specific stuff to it as necessary.
llvm-svn: 10837
testcase test/Regression/Assembler/ConstantExprFold.llx
Note that these kinds of things only rarely show up in source code, but are
exceedingly common in the intermediate stages of algorithms like SCCP. By
folding things (especially relational operators) that use symbolic constants,
we are able to speculatively fold more conditional branches, which can
lead to some big simplifications.
It would be easy to add a lot more special cases here, so if you notice
SCCP missing anything "obvious", you know what to make smarter. :)
llvm-svn: 10812
Move a bunch of (now) private stuff from ConstantFolding.h into
ConstantFolding.cpp.
This _finally_ gets us to a place where we have a sane constant folder. The
rules are:
1. LLVM clients now use ConstantExpr::get* methods to fold constants. If they
cannot be folded, a constantexpr is created, so these methods always return
valid Constant*'s.
2. The implementation of ConstantExpr::get* uses the functions exposed by
ConstantFolding.h to try to fold constants. If they cannot be folded,
they should return a null pointer.
3. The implementation of ConstantFolding can do whatever it wants, and only
has one client (Constants.cpp)
This cuts down on the wierd dependencies, and eliminates the two interfaces.
The old constanthandling interface was especially bad for clients to use
because almost none of them took the failure condition into consideration,
thus leading to obscure problems.
llvm-svn: 10807
this whole refactoring: allow constant folding methods to return something
other than predefined classes, allow them to return generic Constant*'s.
llvm-svn: 10806