This resolves a README entry and technically resolves PR4916,
but we still get poor code for the testcase in that PR because
GVN isn't CSE'ing uadd with add, filed as PR8817.
Previously we got:
_test7: ## @test7
addq %rsi, %rdi
cmpq %rdi, %rsi
movl $42, %eax
cmovaq %rsi, %rax
ret
Now we get:
_test7: ## @test7
addq %rsi, %rdi
movl $42, %eax
cmovbq %rsi, %rax
ret
llvm-svn: 122182
the old thing end up on the instcombine worklist. Not doing this
can cause an extra top-level iteration of instcombine, burning
compile time.
llvm-svn: 122179
sadd formed is half the size of the original type. We can
now compile this into a sadd.i8:
unsigned char X(char a, char b) {
int res = a+b;
if ((unsigned )(res+128) > 255U)
abort();
return res;
}
llvm-svn: 122178
checking to see if the high bits of the original add result were dead.
Inserting a smaller add and zexting back to that size is not good enough.
This is likely to be the fix for 8816.
llvm-svn: 122177
on the DragonEgg self-host bot. Unfortunately, the testcase is pretty messy and doesn't reduce well due to
interactions with other parts of InstCombine.
llvm-svn: 122072
dragonegg self-host buildbot. Original commit message:
Add an InstCombine transform to recognize instances of manual overflow-safe addition
(performing the addition in a wider type and explicitly checking for overflow), and
fold them down to intrinsics. This currently only supports signed-addition, but could
be generalized if someone works out the magic constant formulas for other operations.
llvm-svn: 121965
(performing the addition in a wider type and explicitly checking for overflow), and
fold them down to intrinsics. This currently only supports signed-addition, but could
be generalized if someone works out the magic constant formulas for other operations.
Fixes <rdar://problem/8558713>.
llvm-svn: 121905
(x & 2^n) ? 2^m+C : C
we can offset both arms by C to get the "(x & 2^n) ? 2^m : 0" form, optimize the
select to a shift and apply the offset afterwards.
llvm-svn: 121609
zextOrTrunc(), and APSInt methods extend(), extOrTrunc() and new method
trunc(), to be const and to return a new value instead of modifying the
object in place.
llvm-svn: 121120
fairly systematic way in instcombine. Some of these cases were already dealt
with, in which case I removed the existing code. The case of Add has a bunch of
funky logic which covers some of this plus a few variants (considers shifts to be
a form of multiplication), which I didn't touch. The simplification performed is:
A*B+A*C -> A*(B+C). The improvement is to do this in cases that were not already
handled [such as A*B-A*C -> A*(B-C), which was reported on the mailing list], and
also to do it more often by not checking for "only one use" if "B+C" simplifies.
llvm-svn: 120024
instructions out of InstCombine and into InstructionSimplify. While
there, introduce an m_AllOnes pattern to simplify matching with integers
and vectors with all bits equal to one.
llvm-svn: 119536
offload the work to hasConstantValue rather than do something more
complicated (such handling mutually recursive phis) because (1) it is
not clear it is worth it; and (2) if it is worth it, maybe such logic
would be better placed in hasConstantValue. Adjust some GVN tests
which are now cleaned up much further (eg: all phi nodes are removed).
llvm-svn: 119043
SimplifyAssociativeOrCommutative) "(A op C1) op C2" -> "A op (C1 op C2)",
which previously was only done if C1 and C2 were constants, to occur whenever
"C1 op C2" simplifies (a la InstructionSimplify). Since the simplifying operand
combination can no longer be assumed to be the right-hand terms, consider all of
the possible permutations. When compiling "gcc as one big file", transform 2
(i.e. using right-hand operands) fires about 4000 times but it has to be said
that most of the time the simplifying operands are both constants. Transforms
3, 4 and 5 each fired once. Transform 6, which is an existing transform that
I didn't change, never fired. With this change, the testcase is now optimized
perfectly with one run of instcombine (previously it required instcombine +
reassociate + instcombine, and it may just have been luck that this worked).
llvm-svn: 119002
This code had previously used 2*N, where N is the mask length, to represent
undef. That is not safe because the shufflevector operands may have more
than N elements -- they don't have to match the result type.
llvm-svn: 117721
Allow splats even if they don't match either of the original shuffles,
possibly due to undef entries in the shuffles masks. Radar 8597790.
Also fix some 80-column violations.
llvm-svn: 117719
must be called in the pass's constructor. This function uses static dependency declarations to recursively initialize
the pass's dependencies.
Clients that only create passes through the createFooPass() APIs will require no changes. Clients that want to use the
CommandLine options for passes will need to manually call the appropriate initialization functions in PassInitialization.h
before parsing commandline arguments.
I have tested this with all standard configurations of clang and llvm-gcc on Darwin. It is possible that there are problems
with the static dependencies that will only be visible with non-standard options. If you encounter any crash in pass
registration/creation, please send the testcase to me directly.
llvm-svn: 116820
to expose greater opportunities for store narrowing in codegen. This patch fixes a potential
infinite loop in instcombine caused by one of the introduced transforms being overly aggressive.
llvm-svn: 113763
This can result in increased opportunities for store narrowing in code generation. Update a number of
tests for this change. This fixes <rdar://problem/8285027>.
Additionally, because this inverts the order of ors and ands, some patterns for optimizing or-of-and-of-or
no longer fire in instances where they did originally. Add a simple transform which recaptures most of these
opportunities: if we have an or-of-constant-or and have failed to fold away the inner or, commute the order
of the two ors, to give the non-constant or a chance for simplification instead.
llvm-svn: 113679
turning (fptrunc (sqrt (fpext x))) -> (sqrtf x) is great, but we have
to delete the original sqrt as well. Not doing so causes us to do
two sqrt's when building with -fmath-errno (the default on linux).
llvm-svn: 113260
A = shl x, 42
...
B = lshr ..., 38
which can be transformed into:
A = shl x, 4
...
iff we can prove that the would-be-shifted-in bits
are already zero. This eliminates two shifts in the testcase
and allows eliminate of the whole i128 chain in the real example.
llvm-svn: 112314
framework, which is good at ripping through bitfield
operations. This generalize a bunch of the existing
xforms that instcombine does, such as
(x << c) >> c -> and
to handle intermediate logical nodes. This is useful for
ripping up the "promote to large integer" code produced by
SRoA.
llvm-svn: 112304
by the SRoA "promote to large integer" code, eliminating
some type conversions like this:
%94 = zext i16 %93 to i32 ; <i32> [#uses=2]
%96 = lshr i32 %94, 8 ; <i32> [#uses=1]
%101 = trunc i32 %96 to i8 ; <i8> [#uses=1]
This also unblocks other xforms from happening, now clang is able to compile:
struct S { float A, B, C, D; };
float foo(struct S A) { return A.A + A.B+A.C+A.D; }
into:
_foo: ## @foo
## BB#0: ## %entry
pshufd $1, %xmm0, %xmm2
addss %xmm0, %xmm2
movdqa %xmm1, %xmm3
addss %xmm2, %xmm3
pshufd $1, %xmm1, %xmm0
addss %xmm3, %xmm0
ret
on x86-64, instead of:
_foo: ## @foo
## BB#0: ## %entry
movd %xmm0, %rax
shrq $32, %rax
movd %eax, %xmm2
addss %xmm0, %xmm2
movapd %xmm1, %xmm3
addss %xmm2, %xmm3
movd %xmm1, %rax
shrq $32, %rax
movd %eax, %xmm0
addss %xmm3, %xmm0
ret
This seems pretty close to optimal to me, at least without
using horizontal adds. This also triggers in lots of other
code, including SPEC.
llvm-svn: 112278
patterns generated by clang for transpose of a matrix in generic vectors. This is made
of two parts:
1) Propagating vector extracts of hi/lo half into their users
2) Recognizing an insertion of even elements followed by the odd elements as an unpack.
Testcase to come, but this shrinks the # of shuffle instructions generated on x86 from ~40 to the minimal 8.
llvm-svn: 110734
alloca instructions (constrained by their internal encoding),
and add error checking for it. Fix an instcombine bug which
generated huge alignment values (null is infinitely aligned).
This fixes undefined behavior noticed by John Regehr.
llvm-svn: 109643
the corresponding or-icmp-and pattern. This has the added benefit of doing
the matching earlier, and thus being less susceptible to being confused by
earlier transforms.
llvm-svn: 108429
(X >s -1) ? C1 : C2 and (X <s 0) ? C2 : C1
into ((X >>s 31) & (C2 - C1)) + C1, avoiding the conditional.
This optimization could be extended to take non-const C1 and C2 but we better
stay conservative to avoid code size bloat for now.
for
int sel(int n) {
return n >= 0 ? 60 : 100;
}
we now generate
sarl $31, %edi
andl $40, %edi
leal 60(%rdi), %eax
instead of
testl %edi, %edi
movl $60, %ecx
movl $100, %eax
cmovnsl %ecx, %eax
llvm-svn: 107866
with a vector input and output into a shuffle vector. This sort of
sequence happens when the input code stores with one type and reloads
with another type and then SROA promotes to i96 integers, which make
everyone sad.
This fixes rdar://7896024
llvm-svn: 103354
with a fix for self-hosting
rotate CallInst operands, i.e. move callee to the back
of the operand array
the motivation for this patch are laid out in my mail to llvm-commits:
more efficient access to operands and callee, faster callgraph-construction,
smaller compiler binary
llvm-svn: 101465
with a fix
rotate CallInst operands, i.e. move callee to the back
of the operand array
the motivation for this patch are laid out in my mail to llvm-commits:
more efficient access to operands and callee, faster callgraph-construction,
smaller compiler binary
llvm-svn: 101397
of the operand array
the motivation for this patch are laid out in my mail to llvm-commits:
more efficient access to operands and callee, faster callgraph-construction,
smaller compiler binary
llvm-svn: 101364
Added support for address spaces and added a isVolatile field to memcpy, memmove, and memset,
e.g., llvm.memcpy.i32(i8*, i8*, i32, i32) -> llvm.memcpy.p0i8.p0i8.i32(i8*, i8*, i32, i32, i1)
llvm-svn: 100304
Added support for address spaces and added a isVolatile field to memcpy, memmove, and memset,
e.g., llvm.memcpy.i32(i8*, i8*, i32, i32) -> llvm.memcpy.p0i8.p0i8.i32(i8*, i8*, i32, i32, i1)
llvm-svn: 100191
e.g., llvm.memcpy.i32(i8*, i8*, i32, i32) -> llvm.memcpy.p0i8.p0i8.i32(i8*, i8*, i32, i32, i1)
A update of langref will occur in a subsequent checkin.
llvm-svn: 99928
out the remainder of the calls that we should lower in some way and
move the tests to the new correct directory. Fix up tests that are now
optimized more than they were before by -instcombine.
llvm-svn: 97875
Log:
Transform @llvm.objectsize to integer if the argument is a result of malloc of known size.
Modified:
llvm/trunk/lib/Transforms/InstCombine/InstCombineCalls.cpp
llvm/trunk/test/Transforms/InstCombine/objsize.ll
It appears to be causing swb and nightly test failures.
llvm-svn: 97866
parts of the cmp|cmp and cmp&cmp folding logic wasn't prepared for vectors
(unrelated to the bug but noticed while in the code) and the code was
*definitely* not safe to use by the (cast icmp)|(cast icmp) handling logic
that I added in r95855. Fix all this up by changing the various routines
to more consistently use IRBuilder and not pass in the I which had the wrong
type.
llvm-svn: 97801
long test(long x) { return (x & 123124) | 3; }
Currently compiles to:
_test:
orl $3, %edi
movq %rdi, %rax
andq $123127, %rax
ret
This is because instruction and DAG combiners canonicalize
(or (and x, C), D) -> (and (or, D), (C | D))
However, this is only profitable if (C & D) != 0. It gets in the way of the
3-addressification because the input bits are known to be zero.
llvm-svn: 97616
what it does. Enhance it to return false to optimizing vector
sign extensions from vector comparisions, which is the idiom used
to get a splatted vector for a vector comparison.
Doing this breaks vector-casts.ll, add some compensating
transformations to handle the important case they cover without
depending on this canonicalization.
This fixes rdar://7434900 a serious pessimization of vector compares.
llvm-svn: 95855
xform it is checking to actually pass. There is no need to match
m_SelectCst<0, -1> since instcombine canonicalizes that into not(sext).
Add matches for sext(not(x)) in addition to not(sext(x)).
llvm-svn: 95420
Fix bugs where we would compute out of bounds as in bounds, and where
we couldn't know that the linker could override the size of an array.
Add a few new testcases, change existing testcase to use a private
global array instead of extern.
llvm-svn: 95283