Commit Graph

7867 Commits

Author SHA1 Message Date
Daniel Sanders 7913126a08 [globalisel] Add LLVMDev 2019 talks and links for the 2017 talks 2019-10-25 14:53:58 -07:00
Saleem Abdulrasool 2724d9e129 build: remove `LLVM_CXX_STD` extension point
This extension point is not needed. Provide the equivalent option
through `CMAKE_CXX_STANDARD` which mirrors the previous extension point. Rely on
CMake to provide the check for the compiler instead.
2019-10-25 11:51:47 -07:00
Simon Atanasyan 77b3c794e3 [docs] Update Mips feature table in CodeGenerator.rst
Patch by Miloš Stojanović

Differential Revision: https://reviews.llvm.org/D69381
2019-10-25 12:17:34 +03:00
Tom Stellard 27bfee01e9 docs: Update instructions for requesting commit access 2019-10-24 20:42:02 -07:00
Simon Atanasyan fd77e578e9 [docs] Add Mips as a supported architecture in GettingStarted.rst
Patch by Miloš Stojanović

Differential Revision: https://reviews.llvm.org/D69380
2019-10-24 15:56:30 +03:00
Simon Atanasyan c84cfaf9bc [docs] Update link to the MIPS 64-bit ELF object file specification
Patch by Miloš Stojanović

Differential Revision: https://reviews.llvm.org/D69377
2019-10-24 15:56:30 +03:00
Marek Kurdej 73cebfe412 [libFuzzer] docs: update note to include REDUCE event. 2019-10-24 12:04:12 +02:00
Meike Baumgärtner 23fdd513a3
Improve language in GettingStarted.rst
This patch was reviewed and approved by chandlerc.

"Getting Started with the LLVM System" is the first point of contact for many newcomers in the LLVM community.
 * Make the first two paragraphs more welcoming
 * Use more inclusive language
2019-10-23 12:32:57 -07:00
Chandler Carruth bf2975eca0 Remove a no longer accurate sentence from the coding standards.
(And test my commit access. We're working on larger changes here.)
2019-10-23 11:40:45 -07:00
Kit Barton efd7caaa4e Fix broken sphinx link in CMake.rst.
Reviewers: delcypher, beanz

Subscribers: mgorny, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D69325
2019-10-22 14:49:58 -07:00
Owen Reynolds fe263c4f0f [docs][llvm-ar] Update llvm-ar command guide
The llvm-ar command guide had not been updated in some time, it was
missing current functionality and contained information that was out
of date. This change:
- Updates the use of reStructuredText directives, as seen in other tools
  command guides.
- Updates the command synopsis.
- Updates the descriptions of the tool behaviour.
- Updates the options section.
- Adds details of MRI script functionality.
- Removes the sections "Standards" and "File Format"

Differential Revision: https://reviews.llvm.org/D68998

llvm-svn: 375412
2019-10-21 13:13:31 +00:00
Sylvestre Ledru 751e0bb6af Explicit in the doc the current list of projects (with easy copy and paste)
llvm-svn: 375339
2019-10-19 09:55:24 +00:00
Sylvestre Ledru 963e0d6755 Make it clear in the doc that 'all' in LLVM_ENABLE_PROJECTS does install ALL projects
llvm-svn: 375337
2019-10-19 09:27:14 +00:00
Jay Foad aa3806b47c Update docs for fast-math flags.
This adds fneg, phi and select to the list of operations that may use
fast-math flags.

llvm-svn: 375250
2019-10-18 16:07:09 +00:00
Jordan Rupprecht edeebad771 [llvm-objcopy] Add support for shell wildcards
Summary: GNU objcopy accepts the --wildcard flag to allow wildcard matching on symbol-related flags. (Note: it's implicitly true for section flags).

The basic syntax is to allow *, ?, \, and [] which work similarly to how they work in a shell. Additionally, starting a wildcard with ! causes that wildcard to prevent it from matching a flag.

Use an updated GlobPattern in libSupport to handle these patterns. It does not fully match the `fnmatch` used by GNU objcopy since named character classes (e.g. `[[:digit:]]`) are not supported, but this should support most existing use cases (mostly just `*` is what's used anyway).

Reviewers: jhenderson, MaskRay, evgeny777, espindola, alexshap

Reviewed By: MaskRay

Subscribers: nickdesaulniers, emaste, arichardson, hiraditya, jakehehrlich, abrachet, seiya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D66613

llvm-svn: 375169
2019-10-17 20:51:00 +00:00
Fangrui Song 5095a67a1a [docs][llvm-ar] Fix option:: O after r375106
docs-llvm-html fails => unknown option: O

There are lots of formatting issues in the file but they will be fixed by D68998.

llvm-svn: 375107
2019-10-17 11:56:26 +00:00
Fangrui Song a69cc92cb5 [llvm-ar] Implement the O modifier: display member offsets inside the archive
Since GNU ar 2.31, the 't' operation prints member offsets beside file
names if the 'O' modifier is specified. 'O' is ignored for thin
archives.

Reviewed By: gbreynoo, ruiu

Differential Revision: https://reviews.llvm.org/D69087

llvm-svn: 375106
2019-10-17 11:34:29 +00:00
Oliver Stannard 3b598b9c86 Reland: Dead Virtual Function Elimination
Remove dead virtual functions from vtables with
replaceNonMetadataUsesWith, so that CGProfile metadata gets cleaned up
correctly.

Original commit message:

Currently, it is hard for the compiler to remove unused C++ virtual
functions, because they are all referenced from vtables, which are referenced
by constructors. This means that if the constructor is called from any live
code, then we keep every virtual function in the final link, even if there
are no call sites which can use it.

This patch allows unused virtual functions to be removed during LTO (and
regular compilation in limited circumstances) by using type metadata to match
virtual function call sites to the vtable slots they might load from. This
information can then be used in the global dead code elimination pass instead
of the references from vtables to virtual functions, to more accurately
determine which functions are reachable.

To make this transformation safe, I have changed clang's code-generation to
always load virtual function pointers using the llvm.type.checked.load
intrinsic, instead of regular load instructions. I originally tried writing
this using clang's existing code-generation, which uses the llvm.type.test
and llvm.assume intrinsics after doing a normal load. However, it is possible
for optimisations to obscure the relationship between the GEP, load and
llvm.type.test, causing GlobalDCE to fail to find virtual function call
sites.

The existing linkage and visibility types don't accurately describe the scope
in which a virtual call could be made which uses a given vtable. This is
wider than the visibility of the type itself, because a virtual function call
could be made using a more-visible base class. I've added a new
!vcall_visibility metadata type to represent this, described in
TypeMetadata.rst. The internalization pass and libLTO have been updated to
change this metadata when linking is performed.

This doesn't currently work with ThinLTO, because it needs to see every call
to llvm.type.checked.load in the linkage unit. It might be possible to
extend this optimisation to be able to use the ThinLTO summary, as was done
for devirtualization, but until then that combination is rejected in the
clang driver.

To test this, I've written a fuzzer which generates random C++ programs with
complex class inheritance graphs, and virtual functions called through object
and function pointers of different types. The programs are spread across
multiple translation units and DSOs to test the different visibility
restrictions.

I've also tried doing bootstrap builds of LLVM to test this. This isn't
ideal, because only classes in anonymous namespaces can be optimised with
-fvisibility=default, and some parts of LLVM (plugins and bugpoint) do not
work correctly with -fvisibility=hidden. However, there are only 12 test
failures when building with -fvisibility=hidden (and an unmodified compiler),
and this change does not cause any new failures for either value of
-fvisibility.

On the 7 C++ sub-benchmarks of SPEC2006, this gives a geomean code-size
reduction of ~6%, over a baseline compiled with "-O2 -flto
-fvisibility=hidden -fwhole-program-vtables". The best cases are reductions
of ~14% in 450.soplex and 483.xalancbmk, and there are no code size
increases.

I've also run this on a set of 8 mbed-os examples compiled for Armv7M, which
show a geomean size reduction of ~3%, again with no size increases.

I had hoped that this would have no effect on performance, which would allow
it to awlays be enabled (when using -fwhole-program-vtables). However, the
changes in clang to use the llvm.type.checked.load intrinsic are causing ~1%
performance regression in the C++ parts of SPEC2006. It should be possible to
recover some of this perf loss by teaching optimisations about the
llvm.type.checked.load intrinsic, which would make it worth turning this on
by default (though it's still dependent on -fwhole-program-vtables).

Differential revision: https://reviews.llvm.org/D63932

llvm-svn: 375094
2019-10-17 09:58:57 +00:00
Alina Sbirlea c0e6a92e34 Update ReleaseNotes: expand the section on enabling MemorySSA
llvm-svn: 375045
2019-10-16 21:52:09 +00:00
Owen Reynolds 28a3b2aeb4 [llvm-ar] Make paths case insensitive when on windows
When on windows gnu-ar treats member names as case insensitive. This
commit implements the same behaviour.

Differential Revision: https://reviews.llvm.org/D68033

llvm-svn: 375002
2019-10-16 14:07:57 +00:00
DeForest Richards 75b991ebdf [Docs] Updates sidebar links and sets max-width property for div.body
Updates the sidebar links for Getting Started. Also sets max-width on div.body to 1000px.

llvm-svn: 374949
2019-10-15 21:27:20 +00:00
David Stenberg 1ae2d9a2bd [DebugInfo] Add a DW_OP_LLVM_entry_value operation
Summary:
Internally in LLVM's metadata we use DW_OP_entry_value operations with
the same semantics as DWARF; that is, its operand specifies the number
of bytes that the entry value covers.

At the time of emitting entry values we don't know the emitted size of
the DWARF expression that the entry value will cover. Currently the size
is hardcoded to 1 in DIExpression, and other values causes the verifier
to fail. As the size is 1, that effectively means that we can only have
valid entry values for registers that can be encoded in one byte, which
are the registers with DWARF numbers 0 to 31 (as they can be encoded as
single-byte DW_OP_reg0..DW_OP_reg31 rather than a multi-byte
DW_OP_regx). It is a bit confusing, but it seems like llvm-dwarfdump
will print an operation "correctly", even if the byte size is less than
that, which may make it seem that we emit correct DWARF for registers
with DWARF numbers > 31. If you instead use readelf for such cases, it
will interpret the number of specified bytes as a DWARF expression. This
seems like a limitation in llvm-dwarfdump.

As suggested in D66746, a way forward would be to add an internal
variant of DW_OP_entry_value, DW_OP_LLVM_entry_value, whose operand
instead specifies the number of operations that the entry value covers,
and we then translate that into the byte size at the time of emission.

In this patch that internal operation is added. This patch keeps the
limitation that a entry value can only be applied to simple register
locations, but it will fix the issue with the size operand being
incorrect for DWARF numbers > 31.

Reviewers: aprantl, vsk, djtodoro, NikolaPrica

Reviewed By: aprantl

Subscribers: jyknight, fedor.sergeev, hiraditya, llvm-commits

Tags: #debug-info, #llvm

Differential Revision: https://reviews.llvm.org/D67492

llvm-svn: 374881
2019-10-15 11:31:21 +00:00
Jorge Gorbe Moya b052331bd6 Revert "Dead Virtual Function Elimination"
This reverts commit 9f6a873268.

llvm-svn: 374844
2019-10-14 23:25:25 +00:00
DeForest Richards 22373c595e [Docs] Moves Control Flow Document to User Guides
Moves Control Flow document from Reference docs page to User guides page.

llvm-svn: 374733
2019-10-13 20:05:22 +00:00
Roman Lebedev 76cdcf25b8 [LoopIdiomRecognize] Recommit: BCmp loop idiom recognition
Summary:
This is a recommit, this originally landed in rL370454 but was
subsequently reverted in  rL370788 due to
https://bugs.llvm.org/show_bug.cgi?id=43206
The reduced testcase was added to bcmp-negative-tests.ll
as @pr43206_different_loops - we must ensure that the SCEV's
we got are both for the same loop we are currently investigating.

Original commit message:

@mclow.lists brought up this issue up in IRC.
It is a reasonably common problem to compare some two values for equality.
Those may be just some integers, strings or arrays of integers.

In C, there is `memcmp()`, `bcmp()` functions.
In C++, there exists `std::equal()` algorithm.
One can also write that function manually.

libstdc++'s `std::equal()` is specialized to directly call `memcmp()` for
various types, but not `std::byte` from C++2a. https://godbolt.org/z/mx2ejJ

libc++ does not do anything like that, it simply relies on simple C++'s
`operator==()`. https://godbolt.org/z/er0Zwf (GOOD!)

So likely, there exists a certain performance opportunities.
Let's compare performance of naive `std::equal()` (no `memcmp()`) with one that
is using `memcmp()` (in this case, compiled with modified compiler). {F8768213}

```
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <iterator>
#include <limits>
#include <random>
#include <type_traits>
#include <utility>
#include <vector>

#include "benchmark/benchmark.h"

template <class T>
bool equal(T* a, T* a_end, T* b) noexcept {
  for (; a != a_end; ++a, ++b) {
    if (*a != *b) return false;
  }
  return true;
}

template <typename T>
std::vector<T> getVectorOfRandomNumbers(size_t count) {
  std::random_device rd;
  std::mt19937 gen(rd());
  std::uniform_int_distribution<T> dis(std::numeric_limits<T>::min(),
                                       std::numeric_limits<T>::max());
  std::vector<T> v;
  v.reserve(count);
  std::generate_n(std::back_inserter(v), count,
                  [&dis, &gen]() { return dis(gen); });
  assert(v.size() == count);
  return v;
}

struct Identical {
  template <typename T>
  static std::pair<std::vector<T>, std::vector<T>> Gen(size_t count) {
    auto Tmp = getVectorOfRandomNumbers<T>(count);
    return std::make_pair(Tmp, std::move(Tmp));
  }
};

struct InequalHalfway {
  template <typename T>
  static std::pair<std::vector<T>, std::vector<T>> Gen(size_t count) {
    auto V0 = getVectorOfRandomNumbers<T>(count);
    auto V1 = V0;
    V1[V1.size() / size_t(2)]++;  // just change the value.
    return std::make_pair(std::move(V0), std::move(V1));
  }
};

template <class T, class Gen>
void BM_bcmp(benchmark::State& state) {
  const size_t Length = state.range(0);

  const std::pair<std::vector<T>, std::vector<T>> Data =
      Gen::template Gen<T>(Length);
  const std::vector<T>& a = Data.first;
  const std::vector<T>& b = Data.second;
  assert(a.size() == Length && b.size() == a.size());

  benchmark::ClobberMemory();
  benchmark::DoNotOptimize(a);
  benchmark::DoNotOptimize(a.data());
  benchmark::DoNotOptimize(b);
  benchmark::DoNotOptimize(b.data());

  for (auto _ : state) {
    const bool is_equal = equal(a.data(), a.data() + a.size(), b.data());
    benchmark::DoNotOptimize(is_equal);
  }
  state.SetComplexityN(Length);
  state.counters["eltcnt"] =
      benchmark::Counter(Length, benchmark::Counter::kIsIterationInvariant);
  state.counters["eltcnt/sec"] =
      benchmark::Counter(Length, benchmark::Counter::kIsIterationInvariantRate);
  const size_t BytesRead = 2 * sizeof(T) * Length;
  state.counters["bytes_read/iteration"] =
      benchmark::Counter(BytesRead, benchmark::Counter::kDefaults,
                         benchmark::Counter::OneK::kIs1024);
  state.counters["bytes_read/sec"] = benchmark::Counter(
      BytesRead, benchmark::Counter::kIsIterationInvariantRate,
      benchmark::Counter::OneK::kIs1024);
}

template <typename T>
static void CustomArguments(benchmark::internal::Benchmark* b) {
  const size_t L2SizeBytes = []() {
    for (const benchmark::CPUInfo::CacheInfo& I :
         benchmark::CPUInfo::Get().caches) {
      if (I.level == 2) return I.size;
    }
    return 0;
  }();
  // What is the largest range we can check to always fit within given L2 cache?
  const size_t MaxLen = L2SizeBytes / /*total bufs*/ 2 /
                        /*maximal elt size*/ sizeof(T) / /*safety margin*/ 2;
  b->RangeMultiplier(2)->Range(1, MaxLen)->Complexity(benchmark::oN);
}

BENCHMARK_TEMPLATE(BM_bcmp, uint8_t, Identical)
    ->Apply(CustomArguments<uint8_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint16_t, Identical)
    ->Apply(CustomArguments<uint16_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint32_t, Identical)
    ->Apply(CustomArguments<uint32_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint64_t, Identical)
    ->Apply(CustomArguments<uint64_t>);

BENCHMARK_TEMPLATE(BM_bcmp, uint8_t, InequalHalfway)
    ->Apply(CustomArguments<uint8_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint16_t, InequalHalfway)
    ->Apply(CustomArguments<uint16_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint32_t, InequalHalfway)
    ->Apply(CustomArguments<uint32_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint64_t, InequalHalfway)
    ->Apply(CustomArguments<uint64_t>);
```
{F8768210}
```
$ ~/src/googlebenchmark/tools/compare.py --no-utest benchmarks build-{old,new}/test/llvm-bcmp-bench
RUNNING: build-old/test/llvm-bcmp-bench --benchmark_out=/tmp/tmpb6PEUx
2019-04-25 21:17:11
Running build-old/test/llvm-bcmp-bench
Run on (8 X 4000 MHz CPU s)
CPU Caches:
  L1 Data 16K (x8)
  L1 Instruction 64K (x4)
  L2 Unified 2048K (x4)
  L3 Unified 8192K (x1)
Load Average: 0.65, 3.90, 4.14
---------------------------------------------------------------------------------------------------
Benchmark                                         Time             CPU   Iterations UserCounters...
---------------------------------------------------------------------------------------------------
<...>
BM_bcmp<uint8_t, Identical>/512000           432131 ns       432101 ns         1613 bytes_read/iteration=1000k bytes_read/sec=2.20706G/s eltcnt=825.856M eltcnt/sec=1.18491G/s
BM_bcmp<uint8_t, Identical>_BigO               0.86 N          0.86 N
BM_bcmp<uint8_t, Identical>_RMS                   8 %             8 %
<...>
BM_bcmp<uint16_t, Identical>/256000          161408 ns       161409 ns         4027 bytes_read/iteration=1000k bytes_read/sec=5.90843G/s eltcnt=1030.91M eltcnt/sec=1.58603G/s
BM_bcmp<uint16_t, Identical>_BigO              0.67 N          0.67 N
BM_bcmp<uint16_t, Identical>_RMS                 25 %            25 %
<...>
BM_bcmp<uint32_t, Identical>/128000           81497 ns        81488 ns         8415 bytes_read/iteration=1000k bytes_read/sec=11.7032G/s eltcnt=1077.12M eltcnt/sec=1.57078G/s
BM_bcmp<uint32_t, Identical>_BigO              0.71 N          0.71 N
BM_bcmp<uint32_t, Identical>_RMS                 42 %            42 %
<...>
BM_bcmp<uint64_t, Identical>/64000            50138 ns        50138 ns        10909 bytes_read/iteration=1000k bytes_read/sec=19.0209G/s eltcnt=698.176M eltcnt/sec=1.27647G/s
BM_bcmp<uint64_t, Identical>_BigO              0.84 N          0.84 N
BM_bcmp<uint64_t, Identical>_RMS                 27 %            27 %
<...>
BM_bcmp<uint8_t, InequalHalfway>/512000      192405 ns       192392 ns         3638 bytes_read/iteration=1000k bytes_read/sec=4.95694G/s eltcnt=1.86266G eltcnt/sec=2.66124G/s
BM_bcmp<uint8_t, InequalHalfway>_BigO          0.38 N          0.38 N
BM_bcmp<uint8_t, InequalHalfway>_RMS              3 %             3 %
<...>
BM_bcmp<uint16_t, InequalHalfway>/256000     127858 ns       127860 ns         5477 bytes_read/iteration=1000k bytes_read/sec=7.45873G/s eltcnt=1.40211G eltcnt/sec=2.00219G/s
BM_bcmp<uint16_t, InequalHalfway>_BigO         0.50 N          0.50 N
BM_bcmp<uint16_t, InequalHalfway>_RMS             0 %             0 %
<...>
BM_bcmp<uint32_t, InequalHalfway>/128000      49140 ns        49140 ns        14281 bytes_read/iteration=1000k bytes_read/sec=19.4072G/s eltcnt=1.82797G eltcnt/sec=2.60478G/s
BM_bcmp<uint32_t, InequalHalfway>_BigO         0.40 N          0.40 N
BM_bcmp<uint32_t, InequalHalfway>_RMS            18 %            18 %
<...>
BM_bcmp<uint64_t, InequalHalfway>/64000       32101 ns        32099 ns        21786 bytes_read/iteration=1000k bytes_read/sec=29.7101G/s eltcnt=1.3943G eltcnt/sec=1.99381G/s
BM_bcmp<uint64_t, InequalHalfway>_BigO         0.50 N          0.50 N
BM_bcmp<uint64_t, InequalHalfway>_RMS             1 %             1 %
RUNNING: build-new/test/llvm-bcmp-bench --benchmark_out=/tmp/tmpQ46PP0
2019-04-25 21:19:29
Running build-new/test/llvm-bcmp-bench
Run on (8 X 4000 MHz CPU s)
CPU Caches:
  L1 Data 16K (x8)
  L1 Instruction 64K (x4)
  L2 Unified 2048K (x4)
  L3 Unified 8192K (x1)
Load Average: 1.01, 2.85, 3.71
---------------------------------------------------------------------------------------------------
Benchmark                                         Time             CPU   Iterations UserCounters...
---------------------------------------------------------------------------------------------------
<...>
BM_bcmp<uint8_t, Identical>/512000            18593 ns        18590 ns        37565 bytes_read/iteration=1000k bytes_read/sec=51.2991G/s eltcnt=19.2333G eltcnt/sec=27.541G/s
BM_bcmp<uint8_t, Identical>_BigO               0.04 N          0.04 N
BM_bcmp<uint8_t, Identical>_RMS                  37 %            37 %
<...>
BM_bcmp<uint16_t, Identical>/256000           18950 ns        18948 ns        37223 bytes_read/iteration=1000k bytes_read/sec=50.3324G/s eltcnt=9.52909G eltcnt/sec=13.511G/s
BM_bcmp<uint16_t, Identical>_BigO              0.08 N          0.08 N
BM_bcmp<uint16_t, Identical>_RMS                 34 %            34 %
<...>
BM_bcmp<uint32_t, Identical>/128000           18627 ns        18627 ns        37895 bytes_read/iteration=1000k bytes_read/sec=51.198G/s eltcnt=4.85056G eltcnt/sec=6.87168G/s
BM_bcmp<uint32_t, Identical>_BigO              0.16 N          0.16 N
BM_bcmp<uint32_t, Identical>_RMS                 35 %            35 %
<...>
BM_bcmp<uint64_t, Identical>/64000            18855 ns        18855 ns        37458 bytes_read/iteration=1000k bytes_read/sec=50.5791G/s eltcnt=2.39731G eltcnt/sec=3.3943G/s
BM_bcmp<uint64_t, Identical>_BigO              0.32 N          0.32 N
BM_bcmp<uint64_t, Identical>_RMS                 33 %            33 %
<...>
BM_bcmp<uint8_t, InequalHalfway>/512000        9570 ns         9569 ns        73500 bytes_read/iteration=1000k bytes_read/sec=99.6601G/s eltcnt=37.632G eltcnt/sec=53.5046G/s
BM_bcmp<uint8_t, InequalHalfway>_BigO          0.02 N          0.02 N
BM_bcmp<uint8_t, InequalHalfway>_RMS             29 %            29 %
<...>
BM_bcmp<uint16_t, InequalHalfway>/256000       9547 ns         9547 ns        74343 bytes_read/iteration=1000k bytes_read/sec=99.8971G/s eltcnt=19.0318G eltcnt/sec=26.8159G/s
BM_bcmp<uint16_t, InequalHalfway>_BigO         0.04 N          0.04 N
BM_bcmp<uint16_t, InequalHalfway>_RMS            29 %            29 %
<...>
BM_bcmp<uint32_t, InequalHalfway>/128000       9396 ns         9394 ns        73521 bytes_read/iteration=1000k bytes_read/sec=101.518G/s eltcnt=9.41069G eltcnt/sec=13.6255G/s
BM_bcmp<uint32_t, InequalHalfway>_BigO         0.08 N          0.08 N
BM_bcmp<uint32_t, InequalHalfway>_RMS            30 %            30 %
<...>
BM_bcmp<uint64_t, InequalHalfway>/64000        9499 ns         9498 ns        73802 bytes_read/iteration=1000k bytes_read/sec=100.405G/s eltcnt=4.72333G eltcnt/sec=6.73808G/s
BM_bcmp<uint64_t, InequalHalfway>_BigO         0.16 N          0.16 N
BM_bcmp<uint64_t, InequalHalfway>_RMS            28 %            28 %
Comparing build-old/test/llvm-bcmp-bench to build-new/test/llvm-bcmp-bench
Benchmark                                                  Time             CPU      Time Old      Time New       CPU Old       CPU New
---------------------------------------------------------------------------------------------------------------------------------------
<...>
BM_bcmp<uint8_t, Identical>/512000                      -0.9570         -0.9570        432131         18593        432101         18590
<...>
BM_bcmp<uint16_t, Identical>/256000                     -0.8826         -0.8826        161408         18950        161409         18948
<...>
BM_bcmp<uint32_t, Identical>/128000                     -0.7714         -0.7714         81497         18627         81488         18627
<...>
BM_bcmp<uint64_t, Identical>/64000                      -0.6239         -0.6239         50138         18855         50138         18855
<...>
BM_bcmp<uint8_t, InequalHalfway>/512000                 -0.9503         -0.9503        192405          9570        192392          9569
<...>
BM_bcmp<uint16_t, InequalHalfway>/256000                -0.9253         -0.9253        127858          9547        127860          9547
<...>
BM_bcmp<uint32_t, InequalHalfway>/128000                -0.8088         -0.8088         49140          9396         49140          9394
<...>
BM_bcmp<uint64_t, InequalHalfway>/64000                 -0.7041         -0.7041         32101          9499         32099          9498
```

What can we tell from the benchmark?
* Performance of naive equality check somewhat improves with element size,
  maxing out at eltcnt/sec=1.58603G/s for uint16_t, or bytes_read/sec=19.0209G/s
  for uint64_t. I think, that instability implies performance problems.
* Performance of `memcmp()`-aware benchmark always maxes out at around
  bytes_read/sec=51.2991G/s for every type. That is 2.6x the throughput of the
  naive variant!
* eltcnt/sec metric for the `memcmp()`-aware benchmark maxes out at
  eltcnt/sec=27.541G/s for uint8_t (was: eltcnt/sec=1.18491G/s, so 24x) and
  linearly decreases with element size.
  For uint64_t, it's ~4x+ the elements/second.
* The call obvious is more pricey than the loop, with small element count.
  As it can be seen from the full output {F8768210}, the `memcmp()` is almost
  universally worse, independent of the element size (and thus buffer size) when
  element count is less than 8.

So all in all, bcmp idiom does indeed pose untapped performance headroom.
This diff does implement said idiom recognition. I think a reasonable test
coverage is present, but do tell if there is anything obvious missing.

Now, quality. This does succeed to build and pass the test-suite, at least
without any non-bundled elements. {F8768216} {F8768217}
This transform fires 91 times:
```
$ /build/test-suite/utils/compare.py -m loop-idiom.NumBCmp result-new.json
Tests: 1149
Metric: loop-idiom.NumBCmp

Program                                         result-new

MultiSourc...Benchmarks/7zip/7zip-benchmark    79.00
MultiSource/Applications/d/make_dparser         3.00
SingleSource/UnitTests/vla                      2.00
MultiSource/Applications/Burg/burg              1.00
MultiSourc.../Applications/JM/lencod/lencod     1.00
MultiSource/Applications/lemon/lemon            1.00
MultiSource/Benchmarks/Bullet/bullet            1.00
MultiSourc...e/Benchmarks/MallocBench/gs/gs     1.00
MultiSourc...gs-C/TimberWolfMC/timberwolfmc     1.00
MultiSourc...Prolangs-C/simulator/simulator     1.00
```
The size changes are:
I'm not sure what's going on with SingleSource/UnitTests/vla.test yet, did not look.
```
$ /build/test-suite/utils/compare.py -m size..text result-{old,new}.json --filter-hash
Tests: 1149
Same hash: 907 (filtered out)
Remaining: 242
Metric: size..text

Program                                        result-old result-new diff
test-suite...ingleSource/UnitTests/vla.test   753.00     833.00     10.6%
test-suite...marks/7zip/7zip-benchmark.test   1001697.00 966657.00  -3.5%
test-suite...ngs-C/simulator/simulator.test   32369.00   32321.00   -0.1%
test-suite...plications/d/make_dparser.test   89585.00   89505.00   -0.1%
test-suite...ce/Applications/Burg/burg.test   40817.00   40785.00   -0.1%
test-suite.../Applications/lemon/lemon.test   47281.00   47249.00   -0.1%
test-suite...TimberWolfMC/timberwolfmc.test   250065.00  250113.00   0.0%
test-suite...chmarks/MallocBench/gs/gs.test   149889.00  149873.00  -0.0%
test-suite...ications/JM/lencod/lencod.test   769585.00  769569.00  -0.0%
test-suite.../Benchmarks/Bullet/bullet.test   770049.00  770049.00   0.0%
test-suite...HMARK_ANISTROPIC_DIFFUSION/128    NaN        NaN        nan%
test-suite...HMARK_ANISTROPIC_DIFFUSION/256    NaN        NaN        nan%
test-suite...CHMARK_ANISTROPIC_DIFFUSION/64    NaN        NaN        nan%
test-suite...CHMARK_ANISTROPIC_DIFFUSION/32    NaN        NaN        nan%
test-suite...ENCHMARK_BILATERAL_FILTER/64/4    NaN        NaN        nan%
Geomean difference                                                   nan%
         result-old    result-new       diff
count  1.000000e+01  10.00000      10.000000
mean   3.152090e+05  311695.40000  0.006749
std    3.790398e+05  372091.42232  0.036605
min    7.530000e+02  833.00000    -0.034981
25%    4.243300e+04  42401.00000  -0.000866
50%    1.197370e+05  119689.00000 -0.000392
75%    6.397050e+05  639705.00000 -0.000005
max    1.001697e+06  966657.00000  0.106242
```

I don't have timings though.

And now to the code. The basic idea is to completely replace the whole loop.
If we can't fully kill it, don't transform.
I have left one or two comments in the code, so hopefully it can be understood.

Also, there is a few TODO's that i have left for follow-ups:
* widening of `memcmp()`/`bcmp()`
* step smaller than the comparison size
* Metadata propagation
* more than two blocks as long as there is still a single backedge?
* ???

Reviewers: reames, fhahn, mkazantsev, chandlerc, craig.topper, courbet

Reviewed By: courbet

Subscribers: miyuki, hiraditya, xbolva00, nikic, jfb, gchatelet, courbet, llvm-commits, mclow.lists

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D61144

llvm-svn: 374662
2019-10-12 15:35:32 +00:00
Oliver Stannard 9f6a873268 Dead Virtual Function Elimination
Currently, it is hard for the compiler to remove unused C++ virtual
functions, because they are all referenced from vtables, which are referenced
by constructors. This means that if the constructor is called from any live
code, then we keep every virtual function in the final link, even if there
are no call sites which can use it.

This patch allows unused virtual functions to be removed during LTO (and
regular compilation in limited circumstances) by using type metadata to match
virtual function call sites to the vtable slots they might load from. This
information can then be used in the global dead code elimination pass instead
of the references from vtables to virtual functions, to more accurately
determine which functions are reachable.

To make this transformation safe, I have changed clang's code-generation to
always load virtual function pointers using the llvm.type.checked.load
intrinsic, instead of regular load instructions. I originally tried writing
this using clang's existing code-generation, which uses the llvm.type.test
and llvm.assume intrinsics after doing a normal load. However, it is possible
for optimisations to obscure the relationship between the GEP, load and
llvm.type.test, causing GlobalDCE to fail to find virtual function call
sites.

The existing linkage and visibility types don't accurately describe the scope
in which a virtual call could be made which uses a given vtable. This is
wider than the visibility of the type itself, because a virtual function call
could be made using a more-visible base class. I've added a new
!vcall_visibility metadata type to represent this, described in
TypeMetadata.rst. The internalization pass and libLTO have been updated to
change this metadata when linking is performed.

This doesn't currently work with ThinLTO, because it needs to see every call
to llvm.type.checked.load in the linkage unit. It might be possible to
extend this optimisation to be able to use the ThinLTO summary, as was done
for devirtualization, but until then that combination is rejected in the
clang driver.

To test this, I've written a fuzzer which generates random C++ programs with
complex class inheritance graphs, and virtual functions called through object
and function pointers of different types. The programs are spread across
multiple translation units and DSOs to test the different visibility
restrictions.

I've also tried doing bootstrap builds of LLVM to test this. This isn't
ideal, because only classes in anonymous namespaces can be optimised with
-fvisibility=default, and some parts of LLVM (plugins and bugpoint) do not
work correctly with -fvisibility=hidden. However, there are only 12 test
failures when building with -fvisibility=hidden (and an unmodified compiler),
and this change does not cause any new failures for either value of
-fvisibility.

On the 7 C++ sub-benchmarks of SPEC2006, this gives a geomean code-size
reduction of ~6%, over a baseline compiled with "-O2 -flto
-fvisibility=hidden -fwhole-program-vtables". The best cases are reductions
of ~14% in 450.soplex and 483.xalancbmk, and there are no code size
increases.

I've also run this on a set of 8 mbed-os examples compiled for Armv7M, which
show a geomean size reduction of ~3%, again with no size increases.

I had hoped that this would have no effect on performance, which would allow
it to awlays be enabled (when using -fwhole-program-vtables). However, the
changes in clang to use the llvm.type.checked.load intrinsic are causing ~1%
performance regression in the C++ parts of SPEC2006. It should be possible to
recover some of this perf loss by teaching optimisations about the
llvm.type.checked.load intrinsic, which would make it worth turning this on
by default (though it's still dependent on -fwhole-program-vtables).

Differential revision: https://reviews.llvm.org/D63932

llvm-svn: 374539
2019-10-11 11:59:55 +00:00
Kai Nacke 5b5b2fd2b8 [FileCheck] Implement --ignore-case option.
The FileCheck utility is enhanced to support a `--ignore-case`
option. This is useful in cases where the output of Unix tools
differs in case (e.g. case not specified by Posix).

Reviewers: Bigcheese, jakehehrlich, rupprecht, espindola, alexshap, jhenderson, MaskRay

Differential Revision: https://reviews.llvm.org/D68146

llvm-svn: 374538
2019-10-11 11:59:14 +00:00
Tom Stellard 97578b14fc docs/DeveloperPolicy: Add instructions for requesting GitHub commit access
Subscribers: mehdi_amini, jtony, xbolva00, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D66840

llvm-svn: 374474
2019-10-10 23:36:06 +00:00
Julian Lettner b858895c85 [lit] Bring back `--threads` option alias
Bring back `--threads` option which was lost in the move of the
command line argument parsing code to cl_arguments.py.  Update docs
since `--workers` is preferred.

llvm-svn: 374432
2019-10-10 19:43:57 +00:00
Jinsong Ji 26cd5c9370 [PowerPC][docs] Update IBM official docs in Compiler Writers Info page
Summary:
Just realized that most of the links in this page are deprecated.
So update some important reference here:
* adding PowerISA 3.0B/2.7B
* adding P8/P9 User Manual
* ELFv2 ABI and errata

Move deprecated ones into "Other documents..".

Reviewers: #powerpc, hfinkel, nemanjai

Reviewed By: hfinkel

Subscribers: shchenz, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D68817

llvm-svn: 374428
2019-10-10 19:25:30 +00:00
Roman Lebedev a5e65c1cf7 [MCA] Show aggregate over Average Wait times for the whole snippet (PR43219)
Summary:
As disscused in https://bugs.llvm.org/show_bug.cgi?id=43219,
i believe it may be somewhat useful to show //some// aggregates
over all the sea of statistics provided.

Example:
```
Average Wait times (based on the timeline view):
[0]: Executions
[1]: Average time spent waiting in a scheduler's queue
[2]: Average time spent waiting in a scheduler's queue while ready
[3]: Average time elapsed from WB until retire stage

      [0]    [1]    [2]    [3]
0.     3     1.0    1.0    4.7       vmulps     %xmm0, %xmm1, %xmm2
1.     3     2.7    0.0    2.3       vhaddps    %xmm2, %xmm2, %xmm3
2.     3     6.0    0.0    0.0       vhaddps    %xmm3, %xmm3, %xmm4
       3     3.2    0.3    2.3       <total>
```
I.e. we average the averages.

Reviewers: andreadb, mattd, RKSimon

Reviewed By: andreadb

Subscribers: gbedwell, arphaman, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D68714

llvm-svn: 374361
2019-10-10 14:46:21 +00:00
Dmitri Gribenko d3aed7fc79 Revert "[FileCheck] Implement --ignore-case option."
This reverts commit r374339. It broke tests:
http://lab.llvm.org:8011/builders/clang-x86_64-debian-fast/builds/19066

llvm-svn: 374359
2019-10-10 14:27:14 +00:00
Kai Nacke dfd2b6f07f [FileCheck] Implement --ignore-case option.
The FileCheck utility is enhanced to support a `--ignore-case`
option. This is useful in cases where the output of Unix tools
differs in case (e.g. case not specified by Posix).

Reviewers: Bigcheese, jakehehrlich, rupprecht, espindola, alexshap, jhenderson, MaskRay

Differential Revision: https://reviews.llvm.org/D68146

llvm-svn: 374339
2019-10-10 13:15:41 +00:00
Roman Lebedev 536b0ee40a [UBSan][clang][compiler-rt] Applying non-zero offset to nullptr is undefined behaviour
Summary:
Quote from http://eel.is/c++draft/expr.add#4:
```
4     When an expression J that has integral type is added to or subtracted
      from an expression P of pointer type, the result has the type of P.
(4.1) If P evaluates to a null pointer value and J evaluates to 0,
      the result is a null pointer value.
(4.2) Otherwise, if P points to an array element i of an array object x with n
      elements ([dcl.array]), the expressions P + J and J + P
      (where J has the value j) point to the (possibly-hypothetical) array
      element i+j of x if 0≤i+j≤n and the expression P - J points to the
      (possibly-hypothetical) array element i−j of x if 0≤i−j≤n.
(4.3) Otherwise, the behavior is undefined.
```

Therefore, as per the standard, applying non-zero offset to `nullptr`
(or making non-`nullptr` a `nullptr`, by subtracting pointer's integral value
from the pointer itself) is undefined behavior. (*if* `nullptr` is not defined,
i.e. e.g. `-fno-delete-null-pointer-checks` was *not* specified.)

To make things more fun, in C (6.5.6p8), applying *any* offset to null pointer
is undefined, although Clang front-end pessimizes the code by not lowering
that info, so this UB is "harmless".

Since rL369789 (D66608 `[InstCombine] icmp eq/ne (gep inbounds P, Idx..), null -> icmp eq/ne P, null`)
LLVM middle-end uses those guarantees for transformations.
If the source contains such UB's, said code may now be miscompiled.
Such miscompilations were already observed:
* https://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20190826/687838.html
* https://github.com/google/filament/pull/1566

Surprisingly, UBSan does not catch those issues
... until now. This diff teaches UBSan about these UB's.

`getelementpointer inbounds` is a pretty frequent instruction,
so this does have a measurable impact on performance;
I've addressed most of the obvious missing folds (and thus decreased the performance impact by ~5%),
and then re-performed some performance measurements using my [[ https://github.com/darktable-org/rawspeed | RawSpeed ]] benchmark:
(all measurements done with LLVM ToT, the sanitizer never fired.)
* no sanitization vs. existing check: average `+21.62%` slowdown
* existing check vs. check after this patch: average `22.04%` slowdown
* no sanitization vs. this patch: average `48.42%` slowdown

Reviewers: vsk, filcab, rsmith, aaron.ballman, vitalybuka, rjmccall, #sanitizers

Reviewed By: rsmith

Subscribers: kristof.beyls, nickdesaulniers, nikic, ychen, dtzWill, xbolva00, dberris, arphaman, rupprecht, reames, regehr, llvm-commits, cfe-commits

Tags: #clang, #sanitizers, #llvm

Differential Revision: https://reviews.llvm.org/D67122

llvm-svn: 374293
2019-10-10 09:25:02 +00:00
DeForest Richards edbb895b18 [Docs] Adds section for Additional Topics on Reference page
Adds a new section for Additional Topics on the Reference documentation page. Also moves Support Library topic to User Guides page.

llvm-svn: 374230
2019-10-09 21:09:09 +00:00
DeForest Richards 02d264a547 [Docs] Adds Documentation links to sidebar
Adds links to Getting Started/Tutorials, User Guides, and Reference documentation pages to sidebar. Also adds a new section for LLVM IR on the Reference documentation page.

llvm-svn: 374214
2019-10-09 20:26:13 +00:00
DeForest Richards b7538c5140 [Docs] Fixes broken sphinx build - undefined label
Removes label ref pointing to non-existent subsystem docs page.

llvm-svn: 374128
2019-10-08 22:45:20 +00:00
Clement Courbet 2cd0f28959 [llvm-exegesis] Add options to SnippetGenerator.
Summary:
This adds a `-max-configs-per-opcode` option to limit the number of
configs per opcode.

Reviewers: gchatelet

Subscribers: tschuett, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D68642

llvm-svn: 374054
2019-10-08 14:30:24 +00:00
Kevin P. Neal c91f1992a6 Nope, I'm wrong. It looks like someone else removed these on purpose and
it just happened to break the bot right when I did my push. So I'm undoing
this mornings incorrect push. I've also kicked off an email to hopefully
get the bot fixed the correct way.

llvm-svn: 374049
2019-10-08 14:10:26 +00:00
Kevin P. Neal 0929e5eca2 Restore documentation that 'svn update' unexpectedly yanked out from under me.
llvm-svn: 374045
2019-10-08 13:38:42 +00:00
Joerg Sonnenberger 2b9f0b064b Fix the spelling of my name.
llvm-svn: 373980
2019-10-07 22:55:42 +00:00
Reid Kleckner f9b67b810e [X86] Add new calling convention that guarantees tail call optimization
When the target option GuaranteedTailCallOpt is specified, calls with
the fastcc calling convention will be transformed into tail calls if
they are in tail position. This diff adds a new calling convention,
tailcc, currently supported only on X86, which behaves the same way as
fastcc, except that the GuaranteedTailCallOpt flag does not need to
enabled in order to enable tail call optimization.

Patch by Dwight Guth <dwight.guth@runtimeverification.com>!

Reviewed By: lebedev.ri, paquette, rnk

Differential Revision: https://reviews.llvm.org/D67855

llvm-svn: 373976
2019-10-07 22:28:58 +00:00
Kevin P. Neal 9f4de84eb0 Fix another sphinx warning.
Differential Revision:	https://reviews.llvm.org/D64746

llvm-svn: 373909
2019-10-07 14:14:46 +00:00
Kevin P. Neal a6fc72fba9 Fix sphinx warnings.
Differential Revision:	https://reviews.llvm.org/D64746

llvm-svn: 373902
2019-10-07 13:39:56 +00:00
Kevin P. Neal 1c3d19c82d [FPEnv] Add constrained intrinsics for lrint and lround
Earlier in the year intrinsics for lrint, llrint, lround and llround were
added to llvm. The constrained versions are now implemented here.

Reviewed by:	andrew.w.kaylor, craig.topper, cameron.mcinally
Approved by:	craig.topper
Differential Revision:	https://reviews.llvm.org/D64746

llvm-svn: 373900
2019-10-07 13:20:00 +00:00
Djordje Todorovic 0c56f425a0 [llvm-locstats] Fix a typo in the documentation; NFC
llvm-svn: 373880
2019-10-07 07:31:49 +00:00
DeForest Richards 38d16c15b7 [Docs] Removes Subsystem Documentation page
Removes Subsystem Documentation page. Also moves existing topics on Subsystem Documentation page to User Guides and Reference pages.

llvm-svn: 373872
2019-10-06 22:49:22 +00:00
DeForest Richards de0e3aac2a [Docs] Removes Programming Documentation page
Removes Programming Documentation page. Also moves existing topics on Programming Documentation page to User Guides and Reference pages. 

llvm-svn: 373856
2019-10-06 16:10:11 +00:00
DeForest Richards 6d19651410 [Docs] Adds new Getting Started/Tutorials page
Adds a new page for Getting Started/Tutorials topics. Also updates existing topic categories on the User Guides and Reference pages.

llvm-svn: 373854
2019-10-06 15:36:37 +00:00
Sylvestre Ledru 68eef2bcd0 Update the FAQ: remove stuff related to the previous license +
update info about the portability of LLVM.

llvm-svn: 373576
2019-10-03 09:43:54 +00:00
Fangrui Song 671fb34358 [llvm-objcopy] Add --set-section-alignment
Fixes PR43181. This option was recently added to GNU objcopy (binutils
PR24942).

`llvm-objcopy -I binary -O elf64-x86-64 --set-section-alignment .data=8` can set the alignment of .data.

Reviewed By: grimar, jhenderson, rupprecht

Differential Revision: https://reviews.llvm.org/D67656

llvm-svn: 373461
2019-10-02 12:41:25 +00:00
Djordje Todorovic 2ef18fb41a Reland "[utils] Implement the llvm-locstats tool"
The tool reports verbose output for the DWARF debug location coverage.
The llvm-locstats for each variable or formal parameter DIE computes what
percentage from the code section bytes, where it is in scope, it has
location description. The line 0 shows the number (and the percentage) of
DIEs with no location information, but the line 100 shows the number (and
the percentage) of DIEs where there is location information in all code
section bytes (where the variable or parameter is in the scope). The line
50..59 shows the number (and the percentage) of DIEs where the location
information is in between 50 and 59 percentage of its scope covered.

Differential Revision: https://reviews.llvm.org/D66526

The cause of the test failure was resolved.

llvm-svn: 373427
2019-10-02 07:00:01 +00:00
Vedant Kumar a1e7efaaa8 [ReleaseProcess] Document requirement to set MACOSX_DEPLOYMENT_TARGET
llvm-svn: 373356
2019-10-01 17:10:45 +00:00
Djordje Todorovic 372048e908 Revert "Reland "[utils] Implement the llvm-locstats tool""
This reverts commit rL373317 due to test failure on the
clang-s390x-linux build bot.

llvm-svn: 373336
2019-10-01 13:21:15 +00:00
Djordje Todorovic 6d7f7e6792 Reland "[utils] Implement the llvm-locstats tool"
The tool reports verbose output for the DWARF debug location coverage.
The llvm-locstats for each variable or formal parameter DIE computes what
percentage from the code section bytes, where it is in scope, it has
location description. The line 0 shows the number (and the percentage) of
DIEs with no location information, but the line 100 shows the number (and
the percentage) of DIEs where there is location information in all code
section bytes (where the variable or parameter is in the scope). The line
50..59 shows the number (and the percentage) of DIEs where the location
information is in between 50 and 59 percentage of its scope covered.

Differential Revision: https://reviews.llvm.org/D66526

llvm-svn: 373317
2019-10-01 09:59:15 +00:00
Fangrui Song 2d92c8844e [llvm-readobj/llvm-readelf] Delete --arm-attributes (alias for --arch-specific)
D68110 added --arch-specific (supported by GNU readelf) and made
--arm-attributes an alias for it. The tests were later migrated to use
--arch-specific.

Note, llvm-readelf --arch-specific currently just uses llvm-readobj
style output for ARM attributes. The readelf-style output is not
implemented.

Reviewed By: compnerd, kongyi, rupprecht

Differential Revision: https://reviews.llvm.org/D68196

llvm-svn: 373291
2019-10-01 01:31:15 +00:00
Pablo Barrio ffac4e8603 Fix doc for t inline asm constraints for ARM/Thumb
Summary: The constraint goes up to regs d15 and q7, not d16 and q8.

Subscribers: kristof.beyls, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D68090

llvm-svn: 373228
2019-09-30 16:55:10 +00:00
Kevin P. Neal 71c5b38acd Fix breakage of sphinx builders. Sorry for leaving this broken over the
weekend!

llvm-svn: 373215
2019-09-30 14:51:59 +00:00
Djordje Todorovic 8180f3b1cc Revert "Reland "[utils] Implement the llvm-locstats tool""
This reverts commit rL373183.

llvm-svn: 373200
2019-09-30 11:19:11 +00:00
Djordje Todorovic 0f30960619 Reland "[utils] Implement the llvm-locstats tool"
The tool reports verbose output for the DWARF debug location coverage.
The llvm-locstats for each variable or formal parameter DIE computes what
percentage from the code section bytes, where it is in scope, it has
location description. The line 0 shows the number (and the percentage) of
DIEs with no location information, but the line 100 shows the number (and
the percentage) of DIEs where there is location information in all code
section bytes (where the variable or parameter is in the scope). The line
50..59 shows the number (and the percentage) of DIEs where the location
information is in between 50 and 59 percentage of its scope covered.

Differential Revision: https://reviews.llvm.org/D66526

llvm-svn: 373183
2019-09-30 07:35:17 +00:00
DeForest Richards eb78dea4cc [Docs] Moves article links to new pages
Moves existing article links on the Programming, Subsystem, and Reference documentation pages to new locations. Also moves Github Repository and Publications links to the sidebar.

llvm-svn: 373169
2019-09-29 15:31:52 +00:00
DeForest Richards ac5969933a [Docs] Adds sections for Command Line and LibFuzzer articles
Adds sections for Command Line and Libfuzzer articles on Programming Documentation page.

llvm-svn: 373158
2019-09-29 02:16:38 +00:00
DeForest Richards 2605f8c461 [Docs] Adds new section to User Guides page
Adds a section to the User Guides page for articles related to building, packaging, and distributing LLVM. Includes sub-sections for CMake, Clang, and Docker.

llvm-svn: 373113
2019-09-27 19:12:00 +00:00
Kevin P. Neal 875d20bcde Document requirement of function attributes with constrained floating
point.

Reviewed by:    andrew.w.kaylor, uweigand, efriedma
Approved by:    andrew.w.kaylor
Differential Revision:  https://reviews.llvm.org/D67839

llvm-svn: 373002
2019-09-26 17:50:25 +00:00
Nick Desaulniers 93d87260f1 [Verifier] add invariant check for callbr
Summary:
The list of indirect labels should ALWAYS have their blockaddresses as
argument operands to the callbr (but not necessarily the other way
around).  Add an invariant that checks this.

The verifier catches a bad test case that was added recently in r368478.
I think that was a simple mistake, and the test was made less strict in
regards to the precise addresses (as those weren't specifically the
point of the test).

This invariant will be used to find a reported bug.

Link: https://www.spinics.net/lists/arm-kernel/msg753473.html
Link: https://github.com/ClangBuiltLinux/linux/issues/649

Reviewers: craig.topper, void, chandlerc

Reviewed By: void

Subscribers: ychen, lebedev.ri, javed.absar, kristof.beyls, hiraditya, llvm-commits, srhines

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D67196

llvm-svn: 372923
2019-09-25 22:28:27 +00:00
Florian Hahn 6b3749f696 [LangRef] Clarify absence of rounding guarantees for fmuladd.
During the review of D67434, it was recommended to make fmuladd's
behavior more explicit. D67434 depends on this interpretation.

Reviewers: efriedma, jfb, reames, scanon, lebedev.ri, spatel

Reviewed By: spatel

Differential Revision: https://reviews.llvm.org/D67552

llvm-svn: 372892
2019-09-25 16:09:24 +00:00
Sanjay Patel 6d4ea22e70 [IR] allow fast-math-flags on phi of FP values (2nd try)
The changes here are based on the corresponding diffs for allowing FMF on 'select':
D61917 <https://reviews.llvm.org/D61917>

As discussed there, we want to have fast-math-flags be a property of an FP value
because the alternative (having them on things like fcmp) leads to logical
inconsistency such as:
https://bugs.llvm.org/show_bug.cgi?id=38086

The earlier patch for select made almost no practical difference because most
unoptimized conditional code begins life as a phi (based on what I see in clang).
Similarly, I don't expect this patch to do much on its own either because
SimplifyCFG promptly drops the flags when converting to select on a minimal
example like:
https://bugs.llvm.org/show_bug.cgi?id=39535

But once we have this plumbing in place, we should be able to wire up the FMF
propagation and start solving cases like that.

The change to RecurrenceDescriptor::AddReductionVar() is required to prevent a
regression in a LoopVectorize test. We are intersecting the FMF of any
FPMathOperator there, so if a phi is not properly annotated, new math
instructions may not be either. Once we fix the propagation in SimplifyCFG, it
may be safe to remove that hack.

Differential Revision: https://reviews.llvm.org/D67564

llvm-svn: 372878
2019-09-25 14:35:02 +00:00
Sanjay Patel 2cec4b58f5 Revert [IR] allow fast-math-flags on phi of FP values
This reverts r372866 (git commit dec03223a9)

llvm-svn: 372868
2019-09-25 13:29:09 +00:00
Sanjay Patel dec03223a9 [IR] allow fast-math-flags on phi of FP values
The changes here are based on the corresponding diffs for allowing FMF on 'select':
D61917

As discussed there, we want to have fast-math-flags be a property of an FP value
because the alternative (having them on things like fcmp) leads to logical
inconsistency such as:
https://bugs.llvm.org/show_bug.cgi?id=38086

The earlier patch for select made almost no practical difference because most
unoptimized conditional code begins life as a phi (based on what I see in clang).
Similarly, I don't expect this patch to do much on its own either because
SimplifyCFG promptly drops the flags when converting to select on a minimal
example like:
https://bugs.llvm.org/show_bug.cgi?id=39535

But once we have this plumbing in place, we should be able to wire up the FMF
propagation and start solving cases like that.

The change to RecurrenceDescriptor::AddReductionVar() is required to prevent a
regression in a LoopVectorize test. We are intersecting the FMF of any
FPMathOperator there, so if a phi is not properly annotated, new math
instructions may not be either. Once we fix the propagation in SimplifyCFG, it
may be safe to remove that hack.

Differential Revision: https://reviews.llvm.org/D67564

llvm-svn: 372866
2019-09-25 13:14:12 +00:00
James Henderson 12e3099921 [docs][llvm-strings] Clarify "printable character" wording
The --bytes option uses the phrase "printable ASCII characters", but the
description section used simply "printable characters". To avoid any
confusion about locale impacts etc, this change adopts the former's
phrasing in both places. It also fixes a minor grammar issue in the
description.

Reviewed by: MaskRay

Differential Revision: https://reviews.llvm.org/D68016

llvm-svn: 372865
2019-09-25 13:09:17 +00:00
James Henderson 4dd9b2faec [docs][llvm-strip] Update llvm-strip doc to better match llvm-objcopy's
Main changes are mostly wording of some options, but this change also
fixes a switch reference so that a link is created and moves
--strip-sections into the ELF-specific area since it is only supported
for ELF currently.

llvm-svn: 372864
2019-09-25 13:09:12 +00:00
Dmitry Preobrazhensky b9683d3c53 [AMDGPU][MC][DOC] Updated AMD GPU assembler description.
Summary of changes:
- Updated to reflect recent changes in assembler;
- Minor bugfixing and improvements.

llvm-svn: 372857
2019-09-25 12:38:35 +00:00
DeForest Richards ccf6030f7a [Docs] Moves Reference docs to new page
Moves Reference docs to new page. Also adds a table of contents to Getting Involved page.

llvm-svn: 372796
2019-09-25 00:49:02 +00:00
James Henderson 1b103864ee [docs][llvm-strip][llvm-objcopy] Improve wording and fix highlighting
llvm-svn: 372754
2019-09-24 13:41:39 +00:00
James Henderson eefbc358eb [docs][llvm-size] Fix typo
llvm-svn: 372750
2019-09-24 13:14:22 +00:00
Djordje Todorovic ead96d73ac Revert "Reland "[utils] Implement the llvm-locstats tool""
This reverts commit rL372554.

llvm-svn: 372580
2019-09-23 11:04:11 +00:00
Djordje Todorovic 0e490ae0a9 Reland "[utils] Implement the llvm-locstats tool"
The tool reports verbose output for the DWARF debug location coverage.
The llvm-locstats for each variable or formal parameter DIE computes what
percentage from the code section bytes, where it is in scope, it has
location description. The line 0 shows the number (and the percentage) of
DIEs with no location information, but the line 100 shows the number (and
the percentage) of DIEs where there is location information in all code
section bytes (where the variable or parameter is in the scope). The line
50..59 shows the number (and the percentage) of DIEs where the location
information is in between 50 and 59 percentage of its scope covered.

Differential Revision: https://reviews.llvm.org/D66526

llvm-svn: 372554
2019-09-23 07:57:53 +00:00
DeForest Richards 4f86528fc1 [Docs] Updates sidebar links
Adds sidebar links to mailing lists, IRC, and meetups and social events.

llvm-svn: 372488
2019-09-21 21:05:20 +00:00
DeForest Richards c1b0873d42 [Docs] Adds new page for Getting Involved articles
Adds a new page for existing Getting Involved, Development Process, and Community Proposals articles. Also moves Mailing Lists, Meetups and social events, and IRC sections.

llvm-svn: 372487
2019-09-21 20:56:40 +00:00
DeForest Richards e75c6b6d48 [Docs] Bug fix for document not included in toctree
Fixes 'document not included in toctree' bug for FAQ and Lexicon topics.

llvm-svn: 372470
2019-09-21 14:29:19 +00:00
DeForest Richards 75d2c26921 [Docs] Updates sidebar links
Adds additional links to sidebar. Also removes Glossary and FAQ from LLVM Design & Overview section. (These links now reside on the sidebar.)

llvm-svn: 372469
2019-09-21 14:17:09 +00:00
DeForest Richards eacbe1cccc [Docs] Add a custom sidebar to doc pages
Adds a custom sidebar to LLVM docs. Sidebar includes links to How to submit a bug and FAQ topics, as well as a Show Source link and search box.

llvm-svn: 372432
2019-09-20 22:16:39 +00:00
DeForest Richards 01a3080960 [Docs] Move topics to new categories
This commit moves several topics to new categories. 

llvm-svn: 372428
2019-09-20 20:51:33 +00:00
Matt Morehouse 949a126438 [docs] Update structure-aware-fuzzing link.
The document has been moved to the google/fuzzing GitHub repo.

llvm-svn: 372423
2019-09-20 19:39:50 +00:00
Francesco Petrogalli be428513cb [docs] Remove training whitespaces. NFC
Subscribers: jfb, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D67835

llvm-svn: 372399
2019-09-20 15:02:32 +00:00
David Tellenbach 0ecf34dde3 [NFC] Test commit, deleting some whitespace
llvm-svn: 372379
2019-09-20 09:43:31 +00:00
Francesco Petrogalli cde4f727ff [docs] Break long (>80) line. NFC
llvm-svn: 372326
2019-09-19 14:19:32 +00:00
DeForest Richards 8535ba6fa0 [Docs] Moves topics to new categories
This commit moves several topics to new categories. It also removes a few duplicate links in Subsystem Documentation.

llvm-svn: 372274
2019-09-18 23:04:31 +00:00
Bardia Mahjour db800c267d Data Dependence Graph Basics
Summary:
This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper:
D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS.
This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges.
The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored.

The algorithm for building the graph involves the following steps in order:

  1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph.
  2. For each node in the graph establish def-use edges to/from other nodes in the graph.
  3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it.

Authored By: bmahjour

Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert

Reviewed By: Meinersbur, fhahn, myhsu

Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto

Tag: #llvm

Differential Revision: https://reviews.llvm.org/D65350

llvm-svn: 372238
2019-09-18 17:43:45 +00:00
Jinsong Ji 0c8e4a2e0d Reland "[docs][Bugpoint]Add notes about multiple crashes"
Fix the warning.
Bugpoint.rst:124:Mismatch: both interpreted text role prefix and
reference suffix.

Note that the line no here is wrong and misleading,
the problem is in line 128, not 124.

llvm-svn: 372181
2019-09-17 21:09:41 +00:00
Bardia Mahjour 6476d7cf0b Revert "Data Dependence Graph Basics"
This reverts commit c98ec60993, which broke the sphinx-docs build.

llvm-svn: 372168
2019-09-17 19:22:01 +00:00
Bardia Mahjour c98ec60993 Data Dependence Graph Basics
Summary:
This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper:
D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS.
This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges.
The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored.

The algorithm for building the graph involves the following steps in order:

  1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph.
  2. For each node in the graph establish def-use edges to/from other nodes in the graph.
  3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it.

Authored By: bmahjour

Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert

Reviewed By: Meinersbur, fhahn, myhsu

Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto

Tag: #llvm

Differential Revision: https://reviews.llvm.org/D65350

llvm-svn: 372162
2019-09-17 18:55:44 +00:00
Jinsong Ji 6fce46a5f1 [docs][Bugpoint] Revert 5584ead50 a5aa3353
No sure why there are still warnings, revert while I investigate.

llvm-svn: 372161
2019-09-17 18:39:04 +00:00
Jinsong Ji 5584ead50e [docs][Bugpoint] Fix build break.
Bugpoint.rst:124: WARNING: Mismatch: both interpreted text role prefix
and reference suffix.

llvm-svn: 372160
2019-09-17 18:23:06 +00:00
Jinsong Ji a5aa335394 [docs][Bugpoint]Add notes about multiple crashes
Summary:
    When reducing case for a CodeGenCrash, bugpoint may generate a new
    reduced
    testcase that exposes/causes another crash or break something due to
    limitation.

    Bugpoint does not distiguish different crashes currently,
    so when this happens, bugpoint will go on reducing for the new crash,
    or just abort, we can't get the case reduced for the origial crash.

    An advice is added into usage doc to connect to recommend checking error
    message with scripts and `-compile-command`.

Reviewers: modocache, bogner, sebpop, reames, vsk, MatzeB

Reviewed By: vsk

Subscribers: mehdi_amini, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D66832

llvm-svn: 372157
2019-09-17 18:10:09 +00:00
James Henderson 778a5e5734 [docs] Make --version text more correct
Follow-up to r371983. Referring to "this program" in the description of
the --version option in the documentation isn't exactly correct, because
the docs are not part of the program, and so "this program" doesn't
really refer to anything. This patch brings the other users of this
terminology into line with the new updates to llvm-size and
llvm-strings.

Reviewed by: alexshap, MaskRay

Differential Revision: https://reviews.llvm.org/D67618

llvm-svn: 372107
2019-09-17 11:43:42 +00:00
DeForest Richards 3b27f4c088 [Docs] Bug fix for docs homepage
Removes reference to non-existent Reference Documentation page.

llvm-svn: 372032
2019-09-16 20:29:56 +00:00
DeForest Richards e151cb7c63 [Docs] Adds Getting Started/Tutorials, Reference to LLVM docs homepage
Adds a section for Getting Started/Tutorials and Reference topics to the LLVM docs homepage.

llvm-svn: 372031
2019-09-16 20:19:32 +00:00
James Henderson 75b6279c5e [docs][llvm-strings] Write llvm-strings documentation
Previously we only had a stub document.

Reviewed by: MaskRay

Differential Revision: https://reviews.llvm.org/D67554

llvm-svn: 371984
2019-09-16 13:56:12 +00:00
James Henderson e8ed932683 [docs][llvm-size] Write llvm-size documentation
Previously we only had a stub document.

Reviewed by: serge-sans-paille, MaskRay

Differential Revision: https://reviews.llvm.org/D67555

llvm-svn: 371983
2019-09-16 13:20:37 +00:00
Kerry McLaughlin e55b3bf40e [SVE][Inline-Asm] Add constraints for SVE predicate registers
Summary:
Adds the following inline asm constraints for SVE:
  - Upl: One of the low eight SVE predicate registers, P0 to P7 inclusive
  - Upa: SVE predicate register with full range, P0 to P15

Reviewers: t.p.northover, sdesmalen, rovka, momchil.velikov, cameron.mcinally, greened, rengolin

Reviewed By: rovka

Subscribers: javed.absar, tschuett, rkruppe, psnobl, cfe-commits, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D66524

llvm-svn: 371967
2019-09-16 09:45:27 +00:00
Fangrui Song 2f519d7072 [llvm-objcopy] Ignore -B --binary-architecture=
GNU objcopy documents that -B is only useful with architecture-less
input (i.e. "binary" or "ihex"). After D67144, -O defaults to -I, and
-B is essentially a NOP.

* If -O is binary/ihex, GNU objcopy ignores -B.
* If -O is elf*, -B provides the e_machine field in GNU objcopy.

So to convert a blob to an ELF, `-I binary -B i386:x86-64 -O elf64-x86-64` has to be specified.

`-I binary -B i386:x86-64 -O elf64-x86-64` creates an ELF with its
e_machine field set to EM_NONE in GNU objcopy, but a regular x86_64 ELF
in elftoolchain elfcopy. Follow the elftoolchain approach (ignoring -B)
to simplify code. Users that expect their command line portable should
specify -B.

Reviewed By: jhenderson

Differential Revision: https://reviews.llvm.org/D67215

llvm-svn: 371914
2019-09-14 01:36:31 +00:00
Michael Pozulp c45fd0cad4 [llvm-objcopy] Add support for response files in llvm-strip and llvm-objcopy
Summary: Addresses https://bugs.llvm.org/show_bug.cgi?id=42671

Reviewers: jhenderson, espindola, alexshap, rupprecht

Reviewed By: jhenderson

Subscribers: seiya, emaste, arichardson, jakehehrlich, MaskRay, abrachet, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D65372

llvm-svn: 371911
2019-09-14 01:14:43 +00:00
DeForest Richards c6ffefd2d1 [Docs] Bug fix for reference to nonexistent document
This commit fixes a bug in which the toctree contained a reference to a non-existent document.

llvm-svn: 371889
2019-09-13 20:05:57 +00:00
Kevin P. Neal ed73d4aba8 [FPEnv] Document that constrained FP intrinsics cannot be mixed with non-constrained
Reviewed by:	andrew.w.kaylor, cameron.mcinally, uweigand
Approved by:	andrew.w.kaylor
Differential Revision:	https://reviews.llvm.org/D67360

llvm-svn: 371888
2019-09-13 19:36:19 +00:00
James Henderson a2497b43e3 [docs][llvm-readelf][llvm-readobj] Improve --stack-sizes documentation
llvm-readobj's document was missing --stack-sizes entirely from its
document, so this patch adds it. It also adds a note to the llvm-readelf
description that the switch is only implemented for GNU style output
currently. For reference, --stack-sizes was added in r367942.

Reviewed by: MaskRay

Differential Revision: https://reviews.llvm.org/D67548

llvm-svn: 371862
2019-09-13 15:01:39 +00:00
Nico Weber bb69208df8 Fix a few spellos in docs.
(Trying to debug an incremental build thing on a bot...)

llvm-svn: 371860
2019-09-13 14:58:24 +00:00
James Henderson 818e5c9503 [docs][llvm-objcopy][llvm-strip] Improve --strip-unneeded description
Behaviour was recently added to this switch to strip debug sections too.
See r369761.

This change also makes the description for the --strip-unneeded switch
consistent between the two docs.

Reviewed by: MaskRay

Differential Revision: https://reviews.llvm.org/D67546

llvm-svn: 371855
2019-09-13 13:26:52 +00:00
DeForest Richards 3b6d9c0bab [Docs] Adds page for reference docs
Adds a Reference Documentation page for LLVM and API reference documentation.

llvm-svn: 371782
2019-09-12 22:17:04 +00:00
James Henderson f145456fc4 [docs][llvm-strip] Remove unnecessary whitespace for consistency
llvm-svn: 371739
2019-09-12 14:24:04 +00:00
Craig Topper 635d383fad [X86] Enable -mprefer-vector-width=256 by default for Skylake-avx512 and later Intel CPUs.
AVX512 instructions can cause a frequency drop on these CPUs. This
can negate the performance gains from using wider vectors. Enabling
prefer-vector-width=256 will prevent generation of zmm registers
unless explicit 512 bit operations are used in the original source
code.

I believe gcc and icc both do something similar to this by default.

Differential Revision: https://reviews.llvm.org/D67259

llvm-svn: 371694
2019-09-11 23:54:36 +00:00
Adrian Prantl 09f320ad34 Update link to the DWARF spec.
llvm-svn: 371650
2019-09-11 19:57:29 +00:00
Adrian Prantl 4a5dd4a881 Update documentation.
llvm-svn: 371648
2019-09-11 19:49:38 +00:00
Sanjay Patel 3183466aa6 [LangRef] add link for fma intrinsic
llvm-svn: 371615
2019-09-11 13:25:32 +00:00
Sanjay Patel b3b2064c51 [LangRef] fix punctuation; NFC
llvm-svn: 371612
2019-09-11 12:22:24 +00:00
Alina Sbirlea a6e0bef312 Update ReleaseNotes: add enabling of MemorySSA.
llvm-svn: 371569
2019-09-10 23:22:37 +00:00
Djordje Todorovic b21cc626c9 Revert "[utils] Implement the llvm-locstats tool"
This reverts commit rL371520.

llvm-svn: 371527
2019-09-10 14:48:52 +00:00
Djordje Todorovic 54008972d1 [utils] Implement the llvm-locstats tool
The tool reports verbose output for the DWARF debug location coverage.
The llvm-locstats for each variable or formal parameter DIE computes what
percentage from the code section bytes, where it is in scope, it has
location description. The line 0 shows the number (and the percentage) of
DIEs with no location information, but the line 100 shows the number (and
the percentage) of DIEs where there is location information in all code
section bytes (where the variable or parameter is in the scope). The line
50..59 shows the number (and the percentage) of DIEs where the location
information is in between 50 and 59 percentage of its scope covered.

The tool will be very useful for tracking improvements regarding the
"debugging optimized code" support with LLVM ecosystem.

Differential Revision: https://reviews.llvm.org/D66526

llvm-svn: 371520
2019-09-10 13:47:03 +00:00
Evgeniy Stepanov f0e2755b45 LangRef: mention MSan's problem with speculative conditional branches.
Summary:
This short blurb aims to disallow optimizations like we had to revert
(under MSan) in
  https://reviews.llvm.org/D21165
  https://bugs.llvm.org/show_bug.cgi?id=28054
  https://reviews.llvm.org/D67205

Reviewers: vitalybuka, efriedma

Subscribers: llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D67244

llvm-svn: 371461
2019-09-09 22:24:57 +00:00
Craig Topper 5ebd0a6e88 [SelectionDAG] Remove ISD::FP_ROUND_INREG
I don't think anything in tree creates this node. So all of this
code appears to be dead.

Code coverage agrees
http://lab.llvm.org:8080/coverage/coverage-reports/llvm/coverage/Users/buildslave/jenkins/workspace/clang-stage2-coverage-R/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp.html

Differential Revision: https://reviews.llvm.org/D67312

llvm-svn: 371431
2019-09-09 17:54:44 +00:00
Bjorn Pettersson 5e331e4ce8 [Intrinsic] Add the llvm.umul.fix.sat intrinsic
Summary:
Add an intrinsic that takes 2 unsigned integers with
the scale of them provided as the third argument and
performs fixed point multiplication on them. The
result is saturated and clamped between the largest and
smallest representable values of the first 2 operands.

This is a part of implementing fixed point arithmetic
in clang where some of the more complex operations
will be implemented as intrinsics.

Patch by: leonardchan, bjope

Reviewers: RKSimon, craig.topper, bevinh, leonardchan, lebedev.ri, spatel

Reviewed By: leonardchan

Subscribers: ychen, wuzish, nemanjai, MaskRay, jsji, jdoerfert, Ka-Ka, hiraditya, rjmccall, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D57836

llvm-svn: 371308
2019-09-07 12:16:14 +00:00
DeForest Richards 4533b4a3a6 Docs: Update Community section on homepage
This commit includes the following changes: Adds a Getting Involved section under Community. Moves the Development Process section under Community. Moves Sphinx Quickstart Template and How to submit an LLVM bug report from User Guides section to Getting Involved.

llvm-svn: 371127
2019-09-05 21:24:47 +00:00
Sylvestre Ledru 4e281f70ca doc update: explain that Z3 is only for clang SA - thanks to LebedevRI for the suggestion
llvm-svn: 371110
2019-09-05 19:50:56 +00:00
Sylvestre Ledru 37fcd3a33e document the LLVM_ENABLE_Z3_SOLVER option
llvm-svn: 371109
2019-09-05 19:38:15 +00:00
DeForest Richards e3e6624ca2 Docs: Move Documentation sections to separate pages.
Updates the links on the homepage by moving the User Guides, Programming Documentation, and Subsystem Documentation sections to separate pages. Also changes "Overview" to "About" at the top of the LLVM Docs homepage. This work is part of the Google Season of Docs project.

llvm-svn: 371096
2019-09-05 17:30:52 +00:00
Guillaume Chatelet aff45e4b23 [LLVM][Alignment] Make functions using log of alignment explicit
Summary:
This patch renames functions that takes or returns alignment as log2, this patch will help with the transition to llvm::Align.
The renaming makes it explicit that we deal with log(alignment) instead of a power of two alignment.
A few renames uncovered dubious assignments:

 - `MirParser`/`MirPrinter` was expecting powers of two but `MachineFunction` and `MachineBasicBlock` were using deal with log2(align). This patch fixes it and updates the documentation.
 - `MachineBlockPlacement` exposes two flags (`align-all-blocks` and `align-all-nofallthru-blocks`) supposedly interpreted as power of two alignments, internally these values are interpreted as log2(align). This patch updates the documentation,
 - `MachineFunctionexposes` exposes `align-all-functions` also interpreted as power of two alignment, internally this value is interpreted as log2(align). This patch updates the documentation,

Reviewers: lattner, thegameg, courbet

Subscribers: dschuff, arsenm, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, javed.absar, hiraditya, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, dexonsmith, PkmX, jocewei, jsji, Jim, s.egerton, llvm-commits, courbet

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D65945

llvm-svn: 371045
2019-09-05 10:00:22 +00:00
Lang Hames e4526330b3 [docs] Add some comments to the inline LLJIT example.
llvm-svn: 370950
2019-09-04 18:38:26 +00:00
Vedant Kumar 0fcfe89717 [llvm-profdata] Add mode to recover from profile read failures
Add a mode in which profile read errors are not immediately treated as
fatal. In this mode, merging makes forward progress and reports failure
only if no inputs can be read.

Differential Revision: https://reviews.llvm.org/D66985

llvm-svn: 370827
2019-09-03 22:23:16 +00:00
Roman Lebedev bdd65351d3 Revert r370454 "[LoopIdiomRecognize] BCmp loop idiom recognition"
https://bugs.llvm.org/show_bug.cgi?id=43206 was filed,
claiming that there is a miscompilation.
Reverting until i investigate.

This reverts commit r370454

llvm-svn: 370788
2019-09-03 17:14:56 +00:00
Kerry McLaughlin da4ef9b4c8 [SVE][Inline-Asm] Support for SVE asm operands
Summary:
Adds the following inline asm constraints for SVE:
  - w: SVE vector register with full range, Z0 to Z31
  - x: Restricted to registers Z0 to Z15 inclusive.
  - y: Restricted to registers Z0 to Z7 inclusive.

This change also adds the "z" modifier to interpret a register as an SVE register.

Not all of the bitconvert patterns added by this patch are used, but they have been included here for completeness.

Reviewers: t.p.northover, sdesmalen, rovka, momchil.velikov, rengolin, cameron.mcinally, greened

Reviewed By: sdesmalen

Subscribers: javed.absar, tschuett, rkruppe, psnobl, cfe-commits, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D66302

llvm-svn: 370673
2019-09-02 16:12:31 +00:00
Thomas Preud'homme a291b950db [FileCheck] Forbid using var defined on same line
Summary:
Commit r366897 introduced the possibility to set a variable from an
expression, such as [[#VAR2:VAR1+3]]. While introducing this feature, it
introduced extra logic to allow using such a variable on the same line
later on. Unfortunately that extra logic is flawed as it relies on a
mapping from variable to expression defining it when the mapping is from
variable definition to expression. This flaw causes among other issues
PR42896.

This commit avoids the problem by forbidding all use of a variable
defined on the same line, and removes the now useless logic. Redesign
will be done in a later commit because it will require some amount of
refactoring first for the solution to be clean. One example is the need
for some sort of transaction mechanism to set a variable temporarily and
from an expression and rollback if the CHECK pattern does not match so
that diagnostics show the right variable values.

Reviewers: jhenderson, chandlerc, jdenny, probinson, grimar, arichardson, rnk

Subscribers: JonChesterfield, rogfer01, hfinkel, kristina, rnk, tra, arichardson, grimar, dblaikie, probinson, llvm-commits, hiraditya

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D66141

llvm-svn: 370663
2019-09-02 14:04:00 +00:00
Bjorn Pettersson e1ac21c4a2 [LangRef] Update saturating examples for llvm.smul.fix.sat. NFC
Some saturation examples for llvm.smul.fix.sat were not showing
the correct result. I've adjusted the operands to make sure that
we actually trigger overflow in those examples.

llvm-svn: 370566
2019-08-31 09:01:16 +00:00
Craig Topper 18e8d02e8c [X86] Pass v32i16/v64i8 in zmm registers on KNL target.
gcc and icc pass these types in zmm registers in zmm registers.

This patch implements a quick hack to override the register
type before calling convention handling to one that is legal.
Longer term we might want to do something similar to 256-bit
integer registers on AVX1 where we just split all the operations.

Fixes PR42957

Differential Revision: https://reviews.llvm.org/D66708

llvm-svn: 370495
2019-08-30 17:35:08 +00:00
Chris Jackson fa1fe93789 [llvm-objcopy] Allow the visibility of symbols created by --binary and
--add-symbol to be specified with --new-symbol-visibility

llvm-svn: 370458
2019-08-30 10:17:16 +00:00
Roman Lebedev 5c9f3cfec7 [LoopIdiomRecognize] BCmp loop idiom recognition
Summary:
@mclow.lists brought up this issue up in IRC.
It is a reasonably common problem to compare some two values for equality.
Those may be just some integers, strings or arrays of integers.

In C, there is `memcmp()`, `bcmp()` functions.
In C++, there exists `std::equal()` algorithm.
One can also write that function manually.

libstdc++'s `std::equal()` is specialized to directly call `memcmp()` for
various types, but not `std::byte` from C++2a. https://godbolt.org/z/mx2ejJ

libc++ does not do anything like that, it simply relies on simple C++'s
`operator==()`. https://godbolt.org/z/er0Zwf (GOOD!)

So likely, there exists a certain performance opportunities.
Let's compare performance of naive `std::equal()` (no `memcmp()`) with one that
is using `memcmp()` (in this case, compiled with modified compiler). {F8768213}

```
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <iterator>
#include <limits>
#include <random>
#include <type_traits>
#include <utility>
#include <vector>

#include "benchmark/benchmark.h"

template <class T>
bool equal(T* a, T* a_end, T* b) noexcept {
  for (; a != a_end; ++a, ++b) {
    if (*a != *b) return false;
  }
  return true;
}

template <typename T>
std::vector<T> getVectorOfRandomNumbers(size_t count) {
  std::random_device rd;
  std::mt19937 gen(rd());
  std::uniform_int_distribution<T> dis(std::numeric_limits<T>::min(),
                                       std::numeric_limits<T>::max());
  std::vector<T> v;
  v.reserve(count);
  std::generate_n(std::back_inserter(v), count,
                  [&dis, &gen]() { return dis(gen); });
  assert(v.size() == count);
  return v;
}

struct Identical {
  template <typename T>
  static std::pair<std::vector<T>, std::vector<T>> Gen(size_t count) {
    auto Tmp = getVectorOfRandomNumbers<T>(count);
    return std::make_pair(Tmp, std::move(Tmp));
  }
};

struct InequalHalfway {
  template <typename T>
  static std::pair<std::vector<T>, std::vector<T>> Gen(size_t count) {
    auto V0 = getVectorOfRandomNumbers<T>(count);
    auto V1 = V0;
    V1[V1.size() / size_t(2)]++;  // just change the value.
    return std::make_pair(std::move(V0), std::move(V1));
  }
};

template <class T, class Gen>
void BM_bcmp(benchmark::State& state) {
  const size_t Length = state.range(0);

  const std::pair<std::vector<T>, std::vector<T>> Data =
      Gen::template Gen<T>(Length);
  const std::vector<T>& a = Data.first;
  const std::vector<T>& b = Data.second;
  assert(a.size() == Length && b.size() == a.size());

  benchmark::ClobberMemory();
  benchmark::DoNotOptimize(a);
  benchmark::DoNotOptimize(a.data());
  benchmark::DoNotOptimize(b);
  benchmark::DoNotOptimize(b.data());

  for (auto _ : state) {
    const bool is_equal = equal(a.data(), a.data() + a.size(), b.data());
    benchmark::DoNotOptimize(is_equal);
  }
  state.SetComplexityN(Length);
  state.counters["eltcnt"] =
      benchmark::Counter(Length, benchmark::Counter::kIsIterationInvariant);
  state.counters["eltcnt/sec"] =
      benchmark::Counter(Length, benchmark::Counter::kIsIterationInvariantRate);
  const size_t BytesRead = 2 * sizeof(T) * Length;
  state.counters["bytes_read/iteration"] =
      benchmark::Counter(BytesRead, benchmark::Counter::kDefaults,
                         benchmark::Counter::OneK::kIs1024);
  state.counters["bytes_read/sec"] = benchmark::Counter(
      BytesRead, benchmark::Counter::kIsIterationInvariantRate,
      benchmark::Counter::OneK::kIs1024);
}

template <typename T>
static void CustomArguments(benchmark::internal::Benchmark* b) {
  const size_t L2SizeBytes = []() {
    for (const benchmark::CPUInfo::CacheInfo& I :
         benchmark::CPUInfo::Get().caches) {
      if (I.level == 2) return I.size;
    }
    return 0;
  }();
  // What is the largest range we can check to always fit within given L2 cache?
  const size_t MaxLen = L2SizeBytes / /*total bufs*/ 2 /
                        /*maximal elt size*/ sizeof(T) / /*safety margin*/ 2;
  b->RangeMultiplier(2)->Range(1, MaxLen)->Complexity(benchmark::oN);
}

BENCHMARK_TEMPLATE(BM_bcmp, uint8_t, Identical)
    ->Apply(CustomArguments<uint8_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint16_t, Identical)
    ->Apply(CustomArguments<uint16_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint32_t, Identical)
    ->Apply(CustomArguments<uint32_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint64_t, Identical)
    ->Apply(CustomArguments<uint64_t>);

BENCHMARK_TEMPLATE(BM_bcmp, uint8_t, InequalHalfway)
    ->Apply(CustomArguments<uint8_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint16_t, InequalHalfway)
    ->Apply(CustomArguments<uint16_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint32_t, InequalHalfway)
    ->Apply(CustomArguments<uint32_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint64_t, InequalHalfway)
    ->Apply(CustomArguments<uint64_t>);
```
{F8768210}
```
$ ~/src/googlebenchmark/tools/compare.py --no-utest benchmarks build-{old,new}/test/llvm-bcmp-bench
RUNNING: build-old/test/llvm-bcmp-bench --benchmark_out=/tmp/tmpb6PEUx
2019-04-25 21:17:11
Running build-old/test/llvm-bcmp-bench
Run on (8 X 4000 MHz CPU s)
CPU Caches:
  L1 Data 16K (x8)
  L1 Instruction 64K (x4)
  L2 Unified 2048K (x4)
  L3 Unified 8192K (x1)
Load Average: 0.65, 3.90, 4.14
---------------------------------------------------------------------------------------------------
Benchmark                                         Time             CPU   Iterations UserCounters...
---------------------------------------------------------------------------------------------------
<...>
BM_bcmp<uint8_t, Identical>/512000           432131 ns       432101 ns         1613 bytes_read/iteration=1000k bytes_read/sec=2.20706G/s eltcnt=825.856M eltcnt/sec=1.18491G/s
BM_bcmp<uint8_t, Identical>_BigO               0.86 N          0.86 N
BM_bcmp<uint8_t, Identical>_RMS                   8 %             8 %
<...>
BM_bcmp<uint16_t, Identical>/256000          161408 ns       161409 ns         4027 bytes_read/iteration=1000k bytes_read/sec=5.90843G/s eltcnt=1030.91M eltcnt/sec=1.58603G/s
BM_bcmp<uint16_t, Identical>_BigO              0.67 N          0.67 N
BM_bcmp<uint16_t, Identical>_RMS                 25 %            25 %
<...>
BM_bcmp<uint32_t, Identical>/128000           81497 ns        81488 ns         8415 bytes_read/iteration=1000k bytes_read/sec=11.7032G/s eltcnt=1077.12M eltcnt/sec=1.57078G/s
BM_bcmp<uint32_t, Identical>_BigO              0.71 N          0.71 N
BM_bcmp<uint32_t, Identical>_RMS                 42 %            42 %
<...>
BM_bcmp<uint64_t, Identical>/64000            50138 ns        50138 ns        10909 bytes_read/iteration=1000k bytes_read/sec=19.0209G/s eltcnt=698.176M eltcnt/sec=1.27647G/s
BM_bcmp<uint64_t, Identical>_BigO              0.84 N          0.84 N
BM_bcmp<uint64_t, Identical>_RMS                 27 %            27 %
<...>
BM_bcmp<uint8_t, InequalHalfway>/512000      192405 ns       192392 ns         3638 bytes_read/iteration=1000k bytes_read/sec=4.95694G/s eltcnt=1.86266G eltcnt/sec=2.66124G/s
BM_bcmp<uint8_t, InequalHalfway>_BigO          0.38 N          0.38 N
BM_bcmp<uint8_t, InequalHalfway>_RMS              3 %             3 %
<...>
BM_bcmp<uint16_t, InequalHalfway>/256000     127858 ns       127860 ns         5477 bytes_read/iteration=1000k bytes_read/sec=7.45873G/s eltcnt=1.40211G eltcnt/sec=2.00219G/s
BM_bcmp<uint16_t, InequalHalfway>_BigO         0.50 N          0.50 N
BM_bcmp<uint16_t, InequalHalfway>_RMS             0 %             0 %
<...>
BM_bcmp<uint32_t, InequalHalfway>/128000      49140 ns        49140 ns        14281 bytes_read/iteration=1000k bytes_read/sec=19.4072G/s eltcnt=1.82797G eltcnt/sec=2.60478G/s
BM_bcmp<uint32_t, InequalHalfway>_BigO         0.40 N          0.40 N
BM_bcmp<uint32_t, InequalHalfway>_RMS            18 %            18 %
<...>
BM_bcmp<uint64_t, InequalHalfway>/64000       32101 ns        32099 ns        21786 bytes_read/iteration=1000k bytes_read/sec=29.7101G/s eltcnt=1.3943G eltcnt/sec=1.99381G/s
BM_bcmp<uint64_t, InequalHalfway>_BigO         0.50 N          0.50 N
BM_bcmp<uint64_t, InequalHalfway>_RMS             1 %             1 %
RUNNING: build-new/test/llvm-bcmp-bench --benchmark_out=/tmp/tmpQ46PP0
2019-04-25 21:19:29
Running build-new/test/llvm-bcmp-bench
Run on (8 X 4000 MHz CPU s)
CPU Caches:
  L1 Data 16K (x8)
  L1 Instruction 64K (x4)
  L2 Unified 2048K (x4)
  L3 Unified 8192K (x1)
Load Average: 1.01, 2.85, 3.71
---------------------------------------------------------------------------------------------------
Benchmark                                         Time             CPU   Iterations UserCounters...
---------------------------------------------------------------------------------------------------
<...>
BM_bcmp<uint8_t, Identical>/512000            18593 ns        18590 ns        37565 bytes_read/iteration=1000k bytes_read/sec=51.2991G/s eltcnt=19.2333G eltcnt/sec=27.541G/s
BM_bcmp<uint8_t, Identical>_BigO               0.04 N          0.04 N
BM_bcmp<uint8_t, Identical>_RMS                  37 %            37 %
<...>
BM_bcmp<uint16_t, Identical>/256000           18950 ns        18948 ns        37223 bytes_read/iteration=1000k bytes_read/sec=50.3324G/s eltcnt=9.52909G eltcnt/sec=13.511G/s
BM_bcmp<uint16_t, Identical>_BigO              0.08 N          0.08 N
BM_bcmp<uint16_t, Identical>_RMS                 34 %            34 %
<...>
BM_bcmp<uint32_t, Identical>/128000           18627 ns        18627 ns        37895 bytes_read/iteration=1000k bytes_read/sec=51.198G/s eltcnt=4.85056G eltcnt/sec=6.87168G/s
BM_bcmp<uint32_t, Identical>_BigO              0.16 N          0.16 N
BM_bcmp<uint32_t, Identical>_RMS                 35 %            35 %
<...>
BM_bcmp<uint64_t, Identical>/64000            18855 ns        18855 ns        37458 bytes_read/iteration=1000k bytes_read/sec=50.5791G/s eltcnt=2.39731G eltcnt/sec=3.3943G/s
BM_bcmp<uint64_t, Identical>_BigO              0.32 N          0.32 N
BM_bcmp<uint64_t, Identical>_RMS                 33 %            33 %
<...>
BM_bcmp<uint8_t, InequalHalfway>/512000        9570 ns         9569 ns        73500 bytes_read/iteration=1000k bytes_read/sec=99.6601G/s eltcnt=37.632G eltcnt/sec=53.5046G/s
BM_bcmp<uint8_t, InequalHalfway>_BigO          0.02 N          0.02 N
BM_bcmp<uint8_t, InequalHalfway>_RMS             29 %            29 %
<...>
BM_bcmp<uint16_t, InequalHalfway>/256000       9547 ns         9547 ns        74343 bytes_read/iteration=1000k bytes_read/sec=99.8971G/s eltcnt=19.0318G eltcnt/sec=26.8159G/s
BM_bcmp<uint16_t, InequalHalfway>_BigO         0.04 N          0.04 N
BM_bcmp<uint16_t, InequalHalfway>_RMS            29 %            29 %
<...>
BM_bcmp<uint32_t, InequalHalfway>/128000       9396 ns         9394 ns        73521 bytes_read/iteration=1000k bytes_read/sec=101.518G/s eltcnt=9.41069G eltcnt/sec=13.6255G/s
BM_bcmp<uint32_t, InequalHalfway>_BigO         0.08 N          0.08 N
BM_bcmp<uint32_t, InequalHalfway>_RMS            30 %            30 %
<...>
BM_bcmp<uint64_t, InequalHalfway>/64000        9499 ns         9498 ns        73802 bytes_read/iteration=1000k bytes_read/sec=100.405G/s eltcnt=4.72333G eltcnt/sec=6.73808G/s
BM_bcmp<uint64_t, InequalHalfway>_BigO         0.16 N          0.16 N
BM_bcmp<uint64_t, InequalHalfway>_RMS            28 %            28 %
Comparing build-old/test/llvm-bcmp-bench to build-new/test/llvm-bcmp-bench
Benchmark                                                  Time             CPU      Time Old      Time New       CPU Old       CPU New
---------------------------------------------------------------------------------------------------------------------------------------
<...>
BM_bcmp<uint8_t, Identical>/512000                      -0.9570         -0.9570        432131         18593        432101         18590
<...>
BM_bcmp<uint16_t, Identical>/256000                     -0.8826         -0.8826        161408         18950        161409         18948
<...>
BM_bcmp<uint32_t, Identical>/128000                     -0.7714         -0.7714         81497         18627         81488         18627
<...>
BM_bcmp<uint64_t, Identical>/64000                      -0.6239         -0.6239         50138         18855         50138         18855
<...>
BM_bcmp<uint8_t, InequalHalfway>/512000                 -0.9503         -0.9503        192405          9570        192392          9569
<...>
BM_bcmp<uint16_t, InequalHalfway>/256000                -0.9253         -0.9253        127858          9547        127860          9547
<...>
BM_bcmp<uint32_t, InequalHalfway>/128000                -0.8088         -0.8088         49140          9396         49140          9394
<...>
BM_bcmp<uint64_t, InequalHalfway>/64000                 -0.7041         -0.7041         32101          9499         32099          9498
```

What can we tell from the benchmark?
* Performance of naive equality check somewhat improves with element size,
  maxing out at eltcnt/sec=1.58603G/s for uint16_t, or bytes_read/sec=19.0209G/s
  for uint64_t. I think, that instability implies performance problems.
* Performance of `memcmp()`-aware benchmark always maxes out at around
  bytes_read/sec=51.2991G/s for every type. That is 2.6x the throughput of the
  naive variant!
* eltcnt/sec metric for the `memcmp()`-aware benchmark maxes out at
  eltcnt/sec=27.541G/s for uint8_t (was: eltcnt/sec=1.18491G/s, so 24x) and
  linearly decreases with element size.
  For uint64_t, it's ~4x+ the elements/second.
* The call obvious is more pricey than the loop, with small element count.
  As it can be seen from the full output {F8768210}, the `memcmp()` is almost
  universally worse, independent of the element size (and thus buffer size) when
  element count is less than 8.

So all in all, bcmp idiom does indeed pose untapped performance headroom.
This diff does implement said idiom recognition. I think a reasonable test
coverage is present, but do tell if there is anything obvious missing.

Now, quality. This does succeed to build and pass the test-suite, at least
without any non-bundled elements. {F8768216} {F8768217}
This transform fires 91 times:
```
$ /build/test-suite/utils/compare.py -m loop-idiom.NumBCmp result-new.json
Tests: 1149
Metric: loop-idiom.NumBCmp

Program                                         result-new

MultiSourc...Benchmarks/7zip/7zip-benchmark    79.00
MultiSource/Applications/d/make_dparser         3.00
SingleSource/UnitTests/vla                      2.00
MultiSource/Applications/Burg/burg              1.00
MultiSourc.../Applications/JM/lencod/lencod     1.00
MultiSource/Applications/lemon/lemon            1.00
MultiSource/Benchmarks/Bullet/bullet            1.00
MultiSourc...e/Benchmarks/MallocBench/gs/gs     1.00
MultiSourc...gs-C/TimberWolfMC/timberwolfmc     1.00
MultiSourc...Prolangs-C/simulator/simulator     1.00
```
The size changes are:
I'm not sure what's going on with SingleSource/UnitTests/vla.test yet, did not look.
```
$ /build/test-suite/utils/compare.py -m size..text result-{old,new}.json --filter-hash
Tests: 1149
Same hash: 907 (filtered out)
Remaining: 242
Metric: size..text

Program                                        result-old result-new diff
test-suite...ingleSource/UnitTests/vla.test   753.00     833.00     10.6%
test-suite...marks/7zip/7zip-benchmark.test   1001697.00 966657.00  -3.5%
test-suite...ngs-C/simulator/simulator.test   32369.00   32321.00   -0.1%
test-suite...plications/d/make_dparser.test   89585.00   89505.00   -0.1%
test-suite...ce/Applications/Burg/burg.test   40817.00   40785.00   -0.1%
test-suite.../Applications/lemon/lemon.test   47281.00   47249.00   -0.1%
test-suite...TimberWolfMC/timberwolfmc.test   250065.00  250113.00   0.0%
test-suite...chmarks/MallocBench/gs/gs.test   149889.00  149873.00  -0.0%
test-suite...ications/JM/lencod/lencod.test   769585.00  769569.00  -0.0%
test-suite.../Benchmarks/Bullet/bullet.test   770049.00  770049.00   0.0%
test-suite...HMARK_ANISTROPIC_DIFFUSION/128    NaN        NaN        nan%
test-suite...HMARK_ANISTROPIC_DIFFUSION/256    NaN        NaN        nan%
test-suite...CHMARK_ANISTROPIC_DIFFUSION/64    NaN        NaN        nan%
test-suite...CHMARK_ANISTROPIC_DIFFUSION/32    NaN        NaN        nan%
test-suite...ENCHMARK_BILATERAL_FILTER/64/4    NaN        NaN        nan%
Geomean difference                                                   nan%
         result-old    result-new       diff
count  1.000000e+01  10.00000      10.000000
mean   3.152090e+05  311695.40000  0.006749
std    3.790398e+05  372091.42232  0.036605
min    7.530000e+02  833.00000    -0.034981
25%    4.243300e+04  42401.00000  -0.000866
50%    1.197370e+05  119689.00000 -0.000392
75%    6.397050e+05  639705.00000 -0.000005
max    1.001697e+06  966657.00000  0.106242
```

I don't have timings though.

And now to the code. The basic idea is to completely replace the whole loop.
If we can't fully kill it, don't transform.
I have left one or two comments in the code, so hopefully it can be understood.

Also, there is a few TODO's that i have left for follow-ups:
* widening of `memcmp()`/`bcmp()`
* step smaller than the comparison size
* Metadata propagation
* more than two blocks as long as there is still a single backedge?
* ???

Reviewers: reames, fhahn, mkazantsev, chandlerc, craig.topper, courbet

Reviewed By: courbet

Subscribers: hiraditya, xbolva00, nikic, jfb, gchatelet, courbet, llvm-commits, mclow.lists

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D61144

llvm-svn: 370454
2019-08-30 09:51:23 +00:00
Craig Topper 5a43fdd313 [X86] Remove what little support we had for MPX
-Deprecate -mmpx and -mno-mpx command line options
-Remove CPUID detection of mpx for -march=native
-Remove MPX from all CPUs
-Remove MPX preprocessor define

I've left the "mpx" string in the backend so we don't fail on old IR, but its not connected to anything.

gcc has also deprecated these command line options. https://www.phoronix.com/scan.php?page=news_item&px=GCC-Patch-To-Drop-MPX

Differential Revision: https://reviews.llvm.org/D66669

llvm-svn: 370393
2019-08-29 18:09:02 +00:00
Craig Topper a47db7110d [X86][ReleaseNotes] Add a note about the switch to widening legalization for narrow vectors.
llvm-svn: 370233
2019-08-28 17:18:56 +00:00
Kevin P. Neal ddf13c00ed [FPEnv] Add fptosi and fptoui constrained intrinsics.
This implements constrained floating point intrinsics for FP to signed and
unsigned integers.

Quoting from D32319:
The purpose of the constrained intrinsics is to force the optimizer to
respect the restrictions that will be necessary to support things like the
STDC FENV_ACCESS ON pragma without interfering with optimizations when
these restrictions are not needed.

Reviewed by:	Andrew Kaylor, Craig Topper, Hal Finkel, Cameron McInally, Roman Lebedev, Kit Barton
Approved by:	Craig Topper
Differential Revision:	http://reviews.llvm.org/D63782

llvm-svn: 370228
2019-08-28 16:33:36 +00:00
Shafik Yaghmour 5dca5efc0b Debug Info: Support for DW_AT_export_symbols for anonymous structs
This implements the DWARF 5 feature described in:

http://dwarfstd.org/ShowIssue.php?issue=141212.1

To support recognizing anonymous structs:

  struct A {
    struct { // Anonymous struct
        int y;
    };
  }   a;

This patch adds a new (DI)flag to LLVM metadata:

ExportSymbols

Differential Revision: https://reviews.llvm.org/D66352

llvm-svn: 369781
2019-08-23 17:19:21 +00:00
Sylvestre Ledru c2ca965c89 Fix some regressions caused by r369553 on old versions of Debian and Ubuntu
It was causing some errors like:

Encoding error:
'ascii' codec can't decode byte 0xe2 in position 341: ordinal not in range(128)
The full traceback has been saved in /tmp/sphinx-err-y2fq4dtb.log, if you want to report the issue to the developers.

llvm-svn: 369644
2019-08-22 12:16:08 +00:00
Mitch Phillips 84b762af3b [docs] Add GwpAsan to toctree.
Reverts rL369556 in the process, as it's no longer needed.

llvm-svn: 369560
2019-08-21 18:31:03 +00:00
Jordan Rupprecht e4876c9d71 [docs] Fix GwpAsan.rst
llvm-svn: 369556
2019-08-21 18:09:31 +00:00
Mitch Phillips 2213bbb57a Add newline to GWP-ASan sphinx document.
Should fix the document builder.

llvm-svn: 369554
2019-08-21 18:03:11 +00:00
Jordan Rupprecht a28b8d78e4 [docs] Convert remaining command guide entries from md to rst.
Summary:
Linking between markdown and rst files is currently not supported very well, e.g. the current llvm-addr2line docs [1] link to "llvm-symbolizer" instead of "llvm-symbolizer.html". This is weirdly broken in different ways depending on which versions of sphinx and recommonmark are being used, so workaround the bug by using rst everywhere.

[1] http://llvm.org/docs/CommandGuide/llvm-addr2line.html

Reviewers: jhenderson

Reviewed By: jhenderson

Subscribers: lebedev.ri, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D66305

llvm-svn: 369553
2019-08-21 18:00:17 +00:00
Mitch Phillips c776f3f3c2 [GWP-ASan] Add public-facing documentation [6].
Summary:
Note: Do not submit this documentation until Scudo support is reviewed and submitted (should be #[5]).

See D60593 for further information.

This patch introduces the public-facing documentation for GWP-ASan, as well as updating the definition of one of the options, which wasn't properly merged. The document describes the design and features of GWP-ASan, as well as how to use GWP-ASan from both a user's standpoint, and development documentation for supporting allocators.

Reviewers: jfb, morehouse, vlad.tsyrklevich

Reviewed By: morehouse, vlad.tsyrklevich

Subscribers: kcc, dexonsmith, kubamracek, cryptoad, jfb, #sanitizers, llvm-commits, vlad.tsyrklevich, morehouse

Tags: #sanitizers, #llvm

Differential Revision: https://reviews.llvm.org/D62875

llvm-svn: 369552
2019-08-21 17:53:51 +00:00
DeForest Richards c944438dfd [Docs] Test commit
Fixes typo - Removes extra space between last word of sentence and period.

llvm-svn: 369216
2019-08-18 19:07:10 +00:00
Siva Chandra 0890f0f3de Add LLVMLibC proposal to docs/index.rst.
Reviewers: rupprecht

Subscribers: arphaman, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D66307

llvm-svn: 369030
2019-08-15 18:08:11 +00:00
Jonas Devlieghere 0eaee545ee [llvm] Migrate llvm::make_unique to std::make_unique
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.

llvm-svn: 369013
2019-08-15 15:54:37 +00:00
Siva Chandra 1c34d10776 Add a proposal for a libc project under the LLVM umbrella.
Reviewers: chandlerc, dlj, echristo, hfinkel, jfb, zturner

Subscribers: dexonsmith, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D64939

llvm-svn: 369012
2019-08-15 15:50:42 +00:00
Florian Hahn de1d6c8220 Add ptrmask intrinsic
This patch adds a ptrmask intrinsic which allows masking out bits of a
pointer that must be zero when accessing it, because of ABI alignment
requirements or a restriction of the meaningful bits of a pointer
through the data layout.

This avoids doing a ptrtoint/inttoptr round trip in some cases (e.g. tagged
pointers) and allows us to not lose information about the underlying
object.

Reviewers: nlopes, efriedma, hfinkel, sanjoy, jdoerfert, aqjune

Reviewed by: sanjoy, jdoerfert

Differential Revision: https://reviews.llvm.org/D59065

llvm-svn: 368986
2019-08-15 10:12:26 +00:00