This reverts commit 3f3017e because there's a failure on peel-loop-nests.ll
with LLVM_ENABLE_EXPENSIVE_CHECKS on.
Differential Revision: https://reviews.llvm.org/D70304
There are a few global (cl::opt) controls that enable optional
behavior in GVN. Introduce GVNOptions that provide corresponding
per-pass instance controls.
That will allow to use GVN multiple times in pipeline each time
with different settings.
Reviewers: asbirlea, rnk, reames, skatkov, fhahn
Reviewed By: fhahn
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72732
Summary:
The old pass manager separated speed optimization and size optimization
levels into two unsigned values. Coallescing both in an enum in the new
pass manager may lead to unintentional casts and comparisons.
In particular, taking a look at how the loop unroll passes were constructed
previously, the Os/Oz are now (==new pass manager) treated just like O3,
likely unintentionally.
This change disallows raw comparisons between optimization levels, to
avoid such unintended effects. As an effect, the O{s|z} behavior changes
for loop unrolling and loop unroll and jam, matching O2 rather than O3.
The change also parameterizes the threshold values used for loop
unrolling, primarily to aid testing.
Reviewers: tejohnson, davidxl
Reviewed By: tejohnson
Subscribers: zzheng, ychen, mehdi_amini, hiraditya, steven_wu, dexonsmith, dang, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D72547
It appears to be rather useful when analyzing Loops with multiple
deoptimizing exits, perhaps merged ones.
For now it is used in LoopPredication, will be adding more uses
in other loop passes.
Reviewers: asbirlea, fhahn, skatkov, spatel, reames
Reviewed By: reames
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72754
Summary:
InlineResult is used both in APIs assessing whether a call site is
inlinable (e.g. llvm::isInlineViable) as well as in the function
inlining utility (llvm::InlineFunction). It means slightly different
things (can/should inlining happen, vs did it happen), and the
implicit casting may introduce ambiguity (casting from 'false' in
InlineFunction will default a message about hight costs,
which is incorrect here).
The change renames the type to a more generic name, and disables
implicit constructors.
Reviewers: eraman, davidxl
Reviewed By: davidxl
Subscribers: kerbowa, arsenm, jvesely, nhaehnle, eraman, hiraditya, haicheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72744
Summary: Duplicate code in widenWithVariantLoadUseCodegen is removed and also use assert to check unknown extension type as it should be filtered out by the pre condition check before calling this function.
Reviewers: az, sanjoy, sebpop, efriedma, javed.absar, sanjoy.google
Reviewed By: efriedma
Subscribers: hiraditya, llvm-commits, amehsan
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72652
Summary:
Current peeling implementation bails out in case of loop nests.
The patch introduces a field in TargetTransformInfo structure that
certain targets can use to relax the constraints if it's
profitable (disabled by default).
Also additional option is added to enable peeling manually for
experimenting and testing purposes.
Reviewers: fhahn, lebedev.ri, xbolva00
Reviewed By: xbolva00
Subscribers: xbolva00, hiraditya, zzheng, llvm-commits
Differential Revision: https://reviews.llvm.org/D70304
pass.
Summary: This patch changes LoopUnrollAndJamPass to a function pass, and
keeps the loops traversal order same as defined in
FunctionToLoopPassAdaptor LoopPassManager.h.
The next patch will change the loop traversal to outer to inner order,
so more loops can be transform.
Discussion in llvm-dev mailing list:
https://groups.google.com/forum/#!topic/llvm-dev/LF4rUjkVI2g
Reviewer: dmgreen, jdoerfert, Meinersbur, kbarton, bmahjour, etiotto
Reviewed By: dmgreen
Subscribers: hiraditya, zzheng, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D72230
This patch updates the shape propagation to iterate until no new shape
information is discovered.
As initial seed for the forward propagation, we use the matrix intrinsic
instructions. Both propagateShapeForward and propagateShapeBackward
return new work lists, with the instructions to be used for the next
iteration. When propagating forward, we record all instructions we added
new shape information for. When propagating backward, we record all
users of instructions we added new shape information for.
Reviewers: anemet, Gerolf, reames, hfinkel, andrew.w.kaylor
Reviewed By: anemet
Differential Revision: https://reviews.llvm.org/D70901
This patch extends to shape propagation to also include load
instructions and implements shape aware lowering for vector loads.
Reviewers: anemet, Gerolf, reames, hfinkel, andrew.w.kaylor
Reviewed By: anemet
Differential Revision: https://reviews.llvm.org/D70900
This patch extends the shape propagation for matrix operations to also
propagate the shape of instructions to their operands.
Reviewers: anemet, Gerolf, reames, hfinkel, andrew.w.kaylor
Reviewed By: anemet
Differential Revision: https://reviews.llvm.org/D70899
Factor out common logic into some reasonable commented helper functions. In the process, ensure that the in-block vs cross-block cases are handled the same. They previously weren't.
Differential Revision: https://reviews.llvm.org/D67126
SCEVExpander modifies the underlying function so it is more suitable in
Transforms/Utils, rather than Analysis. This allows using other
transform utils in SCEVExpander.
Reviewers: sanjoy.google, efriedma, reames
Reviewed By: sanjoy.google
Differential Revision: https://reviews.llvm.org/D71537
The patch makes sure that the LastThrowing pointer does not point to any instruction deleted by call to DeleteDeadInstruction.
While iterating through the instructions the pass maintains a pointer to the lastThrowing Instruction. A call to deleteDeadInstruction deletes a dead store and other instructions feeding the original dead instruction which also become dead. The instruction pointed by the lastThrowing pointer could also be deleted by the call to DeleteDeadInstruction and thus it becomes a dangling pointer. Because of this, we see an error in the next iteration.
In the patch, we maintain a list of throwing instructions encountered previously and use the last non deleted throwing instruction from the container.
Reviewers: fhahn, bcahoon, efriedma
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D65326
This patch extends the current shape propagation and shape aware
lowering to also support binary operators. Those operators are uniform
with respect to their shape (shape of the input operands is the same as
the shape of their result).
Reviewers: anemet, Gerolf, reames, hfinkel, andrew.w.kaylor
Reviewed By: anemet
Differential Revision: https://reviews.llvm.org/D70898
If the matrix.multiply calls have the contract fast math flag, we can
use fmuladd. This als adds a command line option to force fmuladd
generation. We can retire this option once there is a clang-level
option.
Reviewers: anemet, Gerolf, hfinkel, andrew.w.kaylor
Reviewed By: anemet
Differential Revision: https://reviews.llvm.org/D70951
This patch adds infrastructure for forward shape propagation to
LowerMatrixIntrinsics. It also updates the pass to make use of
the shape information to break up larger vector operations and to
eliminate unnecessary conversion operations between columnwise matrixes
and flattened vectors: if shape information is available for an
instruction, lower the operation to a set of instructions operating on
columns. For example, a store of a matrix is broken down into separate
stores for each column. For users that do not have shape
information (e.g. because they do not yet support shape information
aware lowering), we pack the result columns into a flat vector and
update those users.
It also adds shape aware lowering for the first non-intrinsic
instruction: vector stores.
Example:
For
%c = call <4 x double> @llvm.matrix.transpose(<4 x double> %a, i32 2, i32 2)
store <4 x double> %c, <4 x double>* %Ptr
We generate the code below without shape propagation. Note %9 which
combines the columns of the transposed matrix into a flat vector.
%split = shufflevector <4 x double> %a, <4 x double> undef, <2 x i32> <i32 0, i32 1>
%split1 = shufflevector <4 x double> %a, <4 x double> undef, <2 x i32> <i32 2, i32 3>
%1 = extractelement <2 x double> %split, i64 0
%2 = insertelement <2 x double> undef, double %1, i64 0
%3 = extractelement <2 x double> %split1, i64 0
%4 = insertelement <2 x double> %2, double %3, i64 1
%5 = extractelement <2 x double> %split, i64 1
%6 = insertelement <2 x double> undef, double %5, i64 0
%7 = extractelement <2 x double> %split1, i64 1
%8 = insertelement <2 x double> %6, double %7, i64 1
%9 = shufflevector <2 x double> %4, <2 x double> %8, <4 x i32> <i32 0, i32 1, i32 2, i32 3>
store <4 x double> %9, <4 x double>* %Ptr
With this patch, we propagate the 2x2 shape information from the
transpose to the store and we generate the code below. Note that we
store the columns directly and do not need an extra shuffle.
%9 = bitcast <4 x double>* %Ptr to double*
%10 = bitcast double* %9 to <2 x double>*
store <2 x double> %4, <2 x double>* %10, align 8
%11 = getelementptr double, double* %9, i32 2
%12 = bitcast double* %11 to <2 x double>*
store <2 x double> %8, <2 x double>* %12, align 8
Reviewers: anemet, Gerolf, reames, hfinkel, andrew.w.kaylor
Reviewed By: anemet
Differential Revision: https://reviews.llvm.org/D70897
Summary:
Ignore looking at blocks that are unreachable from entry when
collecting candidates for hosting.
Normally the consthoist pass is executed in the llc pipeline,
just after unreachableblockelim. So it is abnormal to have code
that is unreachable from the entry block. But when running the
pass as part of opt, for example as part of fuzzy testing, we
might trigger various kinds of asserts when collecting candidates
if we include unreachable blocks in that analysis.
It seems like a waste of time to hoist constants in unreachble
blocks, so the solution is to simply ignore such blocks when
collecting the hoisting candidates.
The two added test cases used to end up in two different asserts,
and the intention with the checks is just to verify that we no
longer fail.
Fixes: PR43903
Reviewers: spatel
Reviewed By: spatel
Subscribers: hiraditya, uabelho, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71678
Loop fusion previously had a method to check whether a loop was in rotated form. This method has
been moved into the LoopInfo class. This patch removes the old isRotated method from loop fusion,
in favour of the new one in LoopInfo.
Summary:This PR move instructions from FC0.Latch bottom up to the
beginning of FC1.Latch as long as they are proven safe.
To illustrate why this is beneficial, let's consider the following
example:
Before Fusion:
header1:
br header2
header2:
br header2, latch1
latch1:
br header1, preheader3
preheader3:
br header3
header3:
br header4
header4:
br header4, latch3
latch3:
br header3, exit3
After Fusion (before this PR):
header1:
br header2
header2:
br header2, latch1
latch1:
br header3
header3:
br header4
header4:
br header4, latch3
latch3:
br header1, exit3
Note that preheader3 is removed during fusion before this PR.
Notice that we cannot fuse loop2 with loop4 as there exists block latch1
in between.
This PR move instructions from latch1 to beginning of latch3, and remove
block latch1. LoopFusion is now able to fuse loop nest recursively.
After Fusion (after this PR):
header1:
br header2
header2:
br header3
header3:
br header4
header4:
br header2, latch3
latch3:
br header1, exit3
Reviewer: kbarton, jdoerfert, Meinersbur, dmgreen, fhahn, hfinkel,
bmahjour, etiotto
Reviewed By: kbarton, Meinersbur
Subscribers: hiraditya, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D71165
Summary:
This is a resubmit of D71473.
This patch introduces a set of functions to enable deprecation of IRBuilder functions without breaking out of tree clients.
Functions will be deprecated one by one and as in tree code is cleaned up.
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: aaron.ballman, courbet
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71547
Summary:
This patch restricts loop fusion to only consider rotated loops as valid candidates.
This simplifies the analysis and transformation and aligns with other loop optimizations.
Reviewers: jdoerfert, Meinersbur, dmgreen, etiotto, Whitney, fhahn, hfinkel
Reviewed By: Meinersbur
Subscribers: ormris, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71025
Summary:
This patch introduces a set of functions to enable deprecation of IRBuilder functions without breaking out of tree clients.
Functions will be deprecated one by one and as in tree code is cleaned up.
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: arsenm, jvesely, nhaehnle, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71473
Summary:
Add a RemoveRedundantDbgInstrs to BasicBlockUtils with the
goal to remove redundant dbg intrinsics from a basic block.
This can be useful after various transforms, as it might
be simpler to do a filtering of dbg intrinsics after the
transform than during the transform.
One primary use case would be to replace a too aggressive
removal done by MergeBlockIntoPredecessor, seen at loop
rotate (not done in this patch).
The elimination algorithm currently focuses on dbg.value
intrinsics and is doing two iterations over the BB.
First we iterate backward starting at the last instruction
in the BB. Whenever a consecutive sequence of dbg.value
instructions are found we keep the last dbg.value for
each variable found (variable fragments are identified
using the {DILocalVariable, FragmentInfo, inlinedAt}
triple as given by the DebugVariable helper class).
Next we iterate forward starting at the first instruction
in the BB. Whenever we find a dbg.value describing a
DebugVariable (identified by {DILocalVariable, inlinedAt})
we save the {DIValue, DIExpression} that describes that
variables value. But if the variable already was mapped
to the same {DIValue, DIExpression} pair we instead drop
the second dbg.value.
To ease the process of making lit tests for this utility a
new pass is introduced called RedundantDbgInstElimination.
It can be executed by opt using -redundant-dbg-inst-elim.
Reviewers: aprantl, jmorse, vsk
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71478
GEP index size can be specified in the DataLayout, introduced in D42123. However, there were still places
in which getIndexSizeInBits was used interchangeably with getPointerSizeInBits. This notably caused issues
with Instcombine's visitPtrToInt; but the unit tests was incorrect, so this remained undiscovered.
This fixes the buildbot failures.
Differential Revision: https://reviews.llvm.org/D68328
Patch by Joseph Faulls!
This is the first patch adding an initial set of matrix intrinsics and a
corresponding lowering pass. This has been discussed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2019-October/136240.html
The first patch introduces four new intrinsics (transpose, multiply,
columnwise load and store) and a LowerMatrixIntrinsics pass, that
lowers those intrinsics to vector operations.
Matrixes are embedded in a 'flat' vector (e.g. a 4 x 4 float matrix
embedded in a <16 x float> vector) and the intrinsics take the dimension
information as parameters. Those parameters need to be ConstantInt.
For the memory layout, we initially assume column-major, but in the RFC
we also described how to extend the intrinsics to support row-major as
well.
For the initial lowering, we split the input of the intrinsics into a
set of column vectors, transform those column vectors and concatenate
the result columns to a flat result vector.
This allows us to lower the intrinsics without any shape propagation, as
mentioned in the RFC. In follow-up patches, we plan to submit the
following improvements:
* Shape propagation to eliminate the embedding/splitting for each
intrinsic.
* Fused & tiled lowering of multiply and other operations.
* Optimization remarks highlighting matrix expressions and costs.
* Generate loops for operations on large matrixes.
* More general block processing for operation on large vectors,
exploiting shape information.
We would like to add dedicated transpose, columnwise load and store
intrinsics, even though they are not strictly necessary. For example, we
could instead emit a large shufflevector instruction instead of the
transpose. But we expect that to
(1) become unwieldy for larger matrixes (even for 16x16 matrixes,
the resulting shufflevector masks would be huge),
(2) risk instcombine making small changes, causing us to fail to
detect the transpose, preventing better lowerings
For the load/store, we are additionally planning on exploiting the
intrinsics for better alias analysis.
Reviewers: anemet, Gerolf, reames, hfinkel, andrew.w.kaylor, efriedma, rengolin
Reviewed By: anemet
Differential Revision: https://reviews.llvm.org/D70456
GEP index size can be specified in the DataLayout, introduced in D42123. However, there were still places
in which getIndexSizeInBits was used interchangeably with getPointerSizeInBits. This notably caused issues
with Instcombine's visitPtrToInt; but the unit tests was incorrect, so this remained undiscovered.
Differential Revision: https://reviews.llvm.org/D68328
Patch by Joseph Faulls!
Soon Intrinsic::ID will be a plain integer, so this overload will not be
possible.
Rename both overloads to ensure that downstream targets observe this as
a build failure instead of a runtime failure.
Split off from D71320
Reviewers: efriedma
Differential Revision: https://reviews.llvm.org/D71381
In general ValueHandleBase::ValueIsRAUWd shouldn't be called when not
all uses of the value were actually replaced, though, currently
formLCSSAForInstructions calls it when it inserts LCSSA-phis.
Calls of ValueHandleBase::ValueIsRAUWd were added to LCSSA specifically
to update/invalidate SCEV. In the best case these calls duplicate some
of the work already done by SE->forgetValue, though in case when SCEV of
the value is SCEVUnknown, SCEV replaces the underlying value of
SCEVUnknown with the new value (i.e. acts like LCSSA-phi actually fully
replaces the value it is created for), which leads to SCEV being
corrupted because LCSSA-phi rarely dominates all uses of its inputs.
Fixes bug https://bugs.llvm.org/show_bug.cgi?id=44058.
Reviewers: fhahn, efriedma, reames, sanjoy.google
Reviewed By: fhahn
Subscribers: hiraditya, javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70593
The patch makes sure that the LastThrowing pointer does not point to any instruction deleted by call to DeleteDeadInstruction.
While iterating through the instructions the pass maintains a pointer to the lastThrowing Instruction. A call to deleteDeadInstruction deletes a dead store and other instructions feeding the original dead instruction which also become dead. The instruction pointed by the lastThrowing pointer could also be deleted by the call to DeleteDeadInstruction and thus it becomes a dangling pointer. Because of this, we see an error in the next iteration.
In the patch, we maintain a list of throwing instructions encountered previously and use the last non deleted throwing instruction from the container.
Patch by Ankit <quic_aankit@quicinc.com>
Reviewers: fhahn, bcahoon, efriedma
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D65326
The PHI node checks for inner loop exits are too permissive currently.
As indicated by an existing comment, we should only allow LCSSA PHI
nodes that are part of reductions or are only used outside of the loop
nest. We ensure this by checking the users of the LCSSA PHIs.
Specifically, it is not safe to use an exiting value from the inner loop in the latch of the outer
loop.
It also moves the inner loop exit check before the outer loop exit
check.
Fixes PR43473.
Reviewers: efriedma, mcrosier
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D68144
SCEV caches the exiting blocks when computing exit counts. In
SimpleLoopUnswitch, we split the exit block of the loop to unswitch.
Currently we only invalidate the loop containing that exit block, but if
that block is the exiting block for a parent loop, we have stale cache
entries. We have to invalidate the top-most loop that contains the exit
block as exiting block. We might also be able to skip invalidating the
loop containing the exit block, if the exit block is not an exiting
block of that loop.
There are also 2 more places in SimpleLoopUnswitch, that use a similar
problematic approach to get the loop to invalidate. If the patch makes
sense, I will also update those places to a similar approach (they deal
with multiple exit blocks, so we cannot directly re-use
getTopMostExitingLoop).
Fixes PR43972.
Reviewers: skatkov, reames, asbirlea, chandlerc
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D70786
Summary:
In case of a need to distinguish different query sites for gradual commit or
debugging of PGSO. NFC.
Reviewers: davidxl
Subscribers: hiraditya, zzheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70510
Currently the assertion in updateSuccessor is overly strict in some
cases and overly relaxed in other cases. For branches to the inner and
outer loop preheader it is too strict, because they can either be
unconditional branches or conditional branches with duplicate targets.
Both cases are fine and we can allow updating multiple successors.
On the other hand, we have to at least update one successor. This patch
adds such an assertion.
Summary:
With this patch, we no longer cache F.hasProfileData(). We simply
call the function again.
I'm doing this because:
- JumpThreadingPass also has a member variable named HasProfileData,
which is very confusing,
- the function is very lightweight, and
- this patch makes JumpThreading::runOnFunction more consistent with
JumpThreadingPass::run.
Subscribers: hiraditya, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70602
Summary:
Without this patch, the jump threading pass ignores profiling data
whenever we invoke the pass with the new pass manager.
Specifically, JumpThreadingPass::run calls runImpl with class variable
HasProfileData always set to false. In turn, runImpl sets
HasProfileData to false again:
HasProfileData = HasProfileData_;
In the end, we don't use profiling data at all with the new pass
manager.
This patch fixes the problem by passing F.hasProfileData() to runImpl.
The bug appears to have been introduced at:
https://reviews.llvm.org/D41461
which removed local variable HasProfileData in JumpThreadingPass::run
even though there was one more use left in the same function. As a
result, the remaining use ended referring to the class variable
instead.
Note that F.hasProfileData is an extremely lightweight function, so I
don't see the need to cache its result. Once this patch is approved,
I'm planning to stop caching the result of F.hasProfileData in
runOnFunction.
Reviewers: wmi, eli.friedman
Subscribers: hiraditya, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70509