`llc -march` is problematic because it only switches the target
architecture, but leaves the operating system unchanged. This
occasionally leads to indeterministic tests because the OS from
LLVM_DEFAULT_TARGET_TRIPLE is used.
However we can simply always use `llc -mtriple` instead. This changes
all the tests to do this to avoid people using -march when they copy and
paste parts of tests.
See also the discussion in https://reviews.llvm.org/D35287
llvm-svn: 309774
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
in exposing the scalar value to the broadcast DAG fragment so that we
can catch even reloads and fold them into the broadcast.
This is somewhat magical I'm afraid but seems to work. It is also what
the old lowering did, and I've switched an old test to run both
lowerings demonstrating that we get the same result.
Unlike the old code, I'm not lowering f32 or f64 scalars through this
path when we only have AVX1. The target patterns include pretty heinous
code to re-cast those as shuffles when the scalar happens to not be
spilled because AVX1 provides no broadcast mechanism from registers
what-so-ever. This is terribly brittle. I'd much rather go through our
generic lowering code to get this. If needed, we can add a peephole to
get even more opportunities to broadcast-from-spill-slots that are
exposed post-RA, but my suspicion is this just doesn't matter that much.
llvm-svn: 218734
All changes were made by the following bash script:
find test/CodeGen -name "*.ll" | \
while read NAME; do
echo "$NAME"
grep -q "^; *RUN: *llc.*debug" $NAME && continue
grep -q "^; *RUN:.*llvm-objdump" $NAME && continue
grep -q "^; *RUN: *opt.*" $NAME && continue
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\([A-Za-z0-9_-]*\)\([A-Za-z0-9_-]*\):\( *\)$FUNC[:]* *\$/;\1\2-LABEL:\3$FUNC:/g" $TEMP
done
sed -i '' "s/;\(.*\)-LABEL-LABEL:/;\1-LABEL:/" $TEMP
sed -i '' "s/;\(.*\)-NEXT-LABEL:/;\1-NEXT:/" $TEMP
sed -i '' "s/;\(.*\)-NOT-LABEL:/;\1-NOT:/" $TEMP
sed -i '' "s/;\(.*\)-DAG-LABEL:/;\1-DAG:/" $TEMP
mv $TEMP $NAME
done
This script catches a superset of the cases caught by the script associated with commit r186280. It initially found some false positives due to unusual constructs in a minority of tests; all such cases were disambiguated first in commit r186621.
llvm-svn: 186624
Allow the folding of vbroadcastRR to vbroadcastRM, where the memory operand is a spill slot.
PR12782.
Together with Michael Kuperstein <michael.m.kuperstein@intel.com>
llvm-svn: 160230