This reverts commit fd4808887e.
This patch causes gcc to issue a lot of warnings like:
warning: base class ‘class llvm::MCParsedAsmOperand’ should be
explicitly initialized in the copy constructor [-Wextra]
This patch adds support for prologue and epilogue generation for the z/OS target under the XPLINK64 ABI for functions with a stack size of less than 1048576 bytes (huge stack frames).
Reviewed By: uweigand
Differential Revision: https://reviews.llvm.org/D114457
This patch adds support for prologue and epilogue generation for
the z/OS target under the XPLINK64 ABI for functions with a stack
size of less than 1048576 bytes (huge stack frames).
Reviewed by: uweigand, Kai
Differential Revision: https://reviews.llvm.org/D114457
The AsmParser checks the range of a PC-relative operand, but only if it is
immediate.
This patch adds range checks for operands in applyFixup(), at which point the
offset to a label is known.
The diagnostic message for an operand that is out of range is explicit (with
given value and min/max limits). This is now also done for displacement
fixups.
Review: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D114194
Memset with a constant length was implemented with a single store followed by
a series of MVC:s. This patch changes this so that one store of the byte is
emitted for each MVC, which avoids data dependencies between the MVCs. An
MVI/STC + MVC(len-1) is done for each block.
In addition, memset with a variable length is now also handled without a
libcall. Since the byte is first stored and then MVC is used from that
address, a length of two must now be subtracted instead of one for the loop
and EXRL. This requires an extra check for the one-byte case, which is
handled in a special block with just a single MVI/STC (like GCC).
Review: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D112004
AMDGPU is unusual in that the both stack is indexed in the same
direction as stack growth (up). We therefore always need the emergency
stack slots placed as low as possible to ensure they are in range of
load/store instruction immediate offsets. The existing logic is mostly
OK, but failed if we required stack realignment.
I don't understand what the existing control isFPCloseToIncomingSP is
supposed to mean, but can only be used to stop placing the scavenge
slots earlier. Make this explicit so that targets can opt-in rather
than opt-out only.
Delegate updating of LiveIntervals to each target's
convertToThreeAddress implementation, instead of repairing LiveIntervals
after the fact in TwoAddressInstruction::convertInstTo3Addr.
Differential Revision: https://reviews.llvm.org/D113493
This patch adds support for symbolic displacements, e.g. like 'lg %r0,
sym(%r1)', which is done using relocations. This is needed to compile the
kernel without disabling the integrated assembler.
Review: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D113341
It was discovered that an extra register COPY remained when expanding a
(variable length) memory operation with a loop and there was another use of
the involved address register(s) afterwards.
A simple fix for this is to COPY the address registers before the loop and
use that new vreg instead.
Review: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D112065
All instructions must have a correct size value close to emission when
SystemZLongBranch runs, or a necessary branch relaxation may be missed.
This patch also adds an assert for instruction sizes in SystemZLongBranch.
Review: Ulrich Weigand
This pseudo is expanded very late (AsmPrinter) and therefore has to have a
correct size value, or the branch relaxation pass may make a wrong decision.
Review: Ulrich Weigand
- This patch provides the initial implementation for lowering a call on z/OS according to the XPLINK64 calling convention
- A series of changes have been made to SystemZCallingConv.td to account for these additional XPLINK64 changes including adding a new helper function to shadow the stack along with allocation of a register wherever appropriate
- For the cases of copying a f64 to a gr64 and a f128 / 128-bit vector type to a gr64, a `CCBitConvertToType` has been added and has been bitcasted appropriately in the lowering phase
- Support for the ADA register (R5) will be provided in a later patch.
Reviewed By: uweigand
Differential Revision: https://reviews.llvm.org/D111662
Inspired by D111968, provide a isNegatedPowerOf2() wrapper instead of obfuscating code with (-Value).isPowerOf2() patterns, which I'm sure are likely avenues for typos.....
Differential Revision: https://reviews.llvm.org/D111998
This patch fixes the bug that consisted of treating variable / immediate
length mem operations (such as memcpy, memset, ...) differently. The variable
length case needs to have the length minus 1 passed due to the use of EXRL
target instructions. However, the DAGCombiner can convert a register length
argument into a constant one, and whenever that happened one byte too little
would end up being performed.
This is also a refactorization by reducing the number of opcodes and variants
involved. For any opcode (variable or constant length), only the length minus
one is passed on to the ISD node. The rest of the logic is now instead
handled during isel pseudo expansion.
Review: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D111729
This PR implements the save of the XPLINK callee-saved registers
on z/OS.
Reviewed By: uweigand, Kai
Differential Revision: https://reviews.llvm.org/D111653
This moves the registry higher in the LLVM library dependency stack.
Every client of the target registry needs to link against MC anyway to
actually use the target, so we might as well move this out of Support.
This allows us to ensure that Support doesn't have includes from MC/*.
Differential Revision: https://reviews.llvm.org/D111454
Seem to cause test failures in compiler-rt.
Revert "[SystemZ] Implement memcmp of variable length with CLC."
This reverts commit 7a4e9a0c73.
Revert "[SystemZ] Implement memcpy of variable length with MVC."
This reverts commit c6c13c58ee.
Following the same pattern of memset/memcpy, this patch implements a variable
length memcmp with a CLC loop followed by an EXRL instruction.
Review: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D107380
Instead of making a memcpy libcall, emit an MVC loop and an EXRL instruction
the same way as is already done for memset 0.
Review: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D106874
Note that SystemZMnemonicSpellCheck is defined in
SystemZGenAsmMatcher.inc, which SystemZAsmParser.cpp includes.
Identified with readability-redundant-declaration.
- This patch adds in the GOFFMCAsmInfo interfaces for the z/OS target.
- This patch decouples the previously existing SystemZMCAsmInfo interface for the ELF target and the z/OS target.
- This patch also removes a small test in the SystemZAsmLexerTest.cpp. The reason for this is because, the test is set up for the s390x-ibm-linux (SystemZ ELF triple), and the test checks a function which is overridden only for the z/OS target. The reason we can't change the test to use a z/OS triple outright is because there is still missing support which prevents the successful running of a test (assert in AsmParser.cpp due to missing GOFFAsmParser support)
Reviewed By: uweigand, abhina.sreeskantharajan
Differential Revision: https://reviews.llvm.org/D110077
This patch changes hard-coded usages of SystemZ::R15D with calls to the getStackPointerRegister function. Uses in the LowerCall function are avoided to avoid merge conflicts with an expected upcoming patch.
Reviewed By: uweigand
Differential Revision: https://reviews.llvm.org/D109702
- This patch adds in the GOFF mangling support to the LLVM data layout string. A corresponding additional line has been added into the data layout section in the language reference documentation.
- Furthermore, this patch also sets the right data layout string for the z/OS target in the SystemZ backend.
Reviewed By: uweigand, Kai, abhina.sreeskantharajan, MaskRay
Differential Revision: https://reviews.llvm.org/D109362
The type legalizer has by default no method of doing this bitcast other than
storing and reloading the value from stack.
This patch implements a custom lowering of this operation using extractions
of subregs (z13 and earlier using FP128 register pairs), or of vector
elements (with 'vector enhancements 1' using VR128 FP registers).
Review: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D110346
This simplifies the API and addresses a FIXME in
TwoAddressInstructionPass::convertInstTo3Addr.
Differential Revision: https://reviews.llvm.org/D110229
Based off a discussion on D110100, we should be avoiding default CostKinds whenever possible.
This initial patch removes them from the 'inner' target implementation callbacks - these should only be used by the main TTI calls, so this should guarantee that we don't cause changes in CostKind by missing it in an inner call. This exposed a few missing arguments in getGEPCost and reduction cost calls that I've cleaned up.
Differential Revision: https://reviews.llvm.org/D110242
SystemZ adds the EXRL target instructions in the end of each file. This must
be done before debug info emission since that may end the text section, and
therefore this is now done in emitConstantPools() (instead of in
emitEndOfAsmFile).
Review: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D109513
The .machine directive can be used in assembly files to specify the ISA for
the instructions following it.
Review: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D109660
This patch adds class SystemZFrameLowering which is a SystemZ-specific class
detailing special registers used by calling conventions on the target.
SystemZELFFrameLowering and SystemZXPLINKFrameLowering implement this class
for ELF and XPLINK64 respectively. Previous functionality in SystemZFrameLowering
is moved to SystemZELFFrameLowering. SystemZXPLINKFrameLowering can then be
implemented in future patches.
Reviewed By: uweigand, Kai
Differential Revision: https://reviews.llvm.org/D108777
On some architectures such as Arm and X86 the encoding for a nop may
change depending on the subtarget in operation at the time of
encoding. This change replaces the per module MCSubtargetInfo retained
by the targets AsmBackend in favour of passing through the local
MCSubtargetInfo in operation at the time.
On Arm using the architectural NOP instruction can have a performance
benefit on some implementations.
For Arm I've deleted the copy of the AsmBackend's MCSubtargetInfo to
limit the chances of this causing problems in the future. I've not
done this for other targets such as X86 as there is more frequent use
of the MCSubtargetInfo and it looks to be for stable properties that
we would not expect to vary per function.
This change required threading STI through MCNopsFragment and
MCBoundaryAlignFragment.
I've attempted to take into account the in tree experimental backends.
Differential Revision: https://reviews.llvm.org/D45962