(X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC
(X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC
We have more analyis for 'and' patterns and already lean this way
in the existing code, so this should be neutral or better in IR.
If this does not do as well in codegen, the problem already exists
and we should fix that based on target costs/heuristics.
http://volta.cs.utah.edu:8080/z/oP3ecL
define void @src(i8 %x, i8 %OrC, i8 %C, i1* %p0, i1* %p1) {
%or = or i8 %x, %OrC
%eq = icmp eq i8 %or, %C
store i1 %eq, i1* %p0
%ne = icmp ne i8 %or, %C
store i1 %ne, i1* %p1
ret void
}
define void @tgt(i8 %x, i8 %OrC, i8 %C, i1* %p0, i1* %p1) {
%NotOrC = xor i8 %OrC, -1
%a = and i8 %x, %NotOrC
%NewC = xor i8 %C, %OrC
%eq = icmp eq i8 %a, %NewC
store i1 %eq, i1* %p0
%ne = icmp ne i8 %a, %NewC
store i1 %ne, i1* %p1
ret void
}
As it's causing some bot failures (and per request from kbarton).
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358546
This was originally checked in here:
https://reviews.llvm.org/rL301923
And reverted here:
https://reviews.llvm.org/rL301924
Because there's a clang test that would fail after this. I fixed/removed the
offending CHECK lines in:
https://reviews.llvm.org/rL301928
So let's try this again. Original commit message:
This is the fold that causes the infinite loop in BoringSSL
(https://github.com/google/boringssl/blob/master/crypto/cipher/e_rc2.c)
when we fix instcombine demanded bits to prefer 'not' ops as in https://reviews.llvm.org/D32255.
There are 2 or 3 problems with dyn_castNotVal, and I don't think we can
reinstate https://reviews.llvm.org/D32255 until dyn_castNotVal is completely eliminated.
1. As shown here, it transforms 'not' into random xor. This transform is harmful to SCEV and codegen because 'not' can often be folded while random xor cannot.
2. It does not transform vector constants. This is actually a good thing, but if you don't believe the above argument, then we shouldn't have excluded vectors.
3. It tries to avoid transforming not(not(X)). That's nice, but it doesn't match the greedy nature of instcombine. If we DeMorganize a pattern that has an extra 'not' in it: ~(~(~X) & Y) --> (~X | ~Y)
That's just another case of DeMorgan, so we should trust that we'll fold that pattern too: (~X | ~ Y) --> ~(X & Y)
Differential Revision: https://reviews.llvm.org/D32665
llvm-svn: 301929
This is the fold that causes the infinite loop in BoringSSL
(https://github.com/google/boringssl/blob/master/crypto/cipher/e_rc2.c)
when we fix instcombine demanded bits to prefer 'not' ops as in D32255.
There are 2 or 3 problems with dyn_castNotVal, and I don't think we can
reinstate D32255 until dyn_castNotVal is completely eliminated.
1. As shown here, it transforms 'not' into random xor. This transform is
harmful to SCEV and codegen because 'not' can often be folded while
random xor cannot.
2. It does not transform vector constants. This is actually a good thing,
but if you don't believe the above argument, then we shouldn't have
excluded vectors.
3. It tries to avoid transforming not(not(X)). That's nice, but it doesn't
match the greedy nature of instcombine. If we DeMorganize a pattern
that has an extra 'not' in it:
~(~(~X) & Y) --> (~X | ~Y)
That's just another case of DeMorgan, so we should trust that we'll fold
that pattern too:
(~X | ~ Y) --> ~(X & Y)
Differential Revision: https://reviews.llvm.org/D32665
llvm-svn: 301923
There was an efficiency problem with how we processed @llvm.assume in
ValueTracking (and other places). The AssumptionCache tracked all of the
assumptions in a given function. In order to find assumptions relevant to
computing known bits, etc. we searched every assumption in the function. For
ValueTracking, that means that we did O(#assumes * #values) work in InstCombine
and other passes (with a constant factor that can be quite large because we'd
repeat this search at every level of recursion of the analysis).
Several of us discussed this situation at the last developers' meeting, and
this implements the discussed solution: Make the values that an assume might
affect operands of the assume itself. To avoid exposing this detail to
frontends and passes that need not worry about it, I've used the new
operand-bundle feature to add these extra call "operands" in a way that does
not affect the intrinsic's signature. I think this solution is relatively
clean. InstCombine adds these extra operands based on what ValueTracking, LVI,
etc. will need and then those passes need only search the users of the values
under consideration. This should fix the computational-complexity problem.
At this point, no passes depend on the AssumptionCache, and so I'll remove
that as a follow-up change.
Differential Revision: https://reviews.llvm.org/D27259
llvm-svn: 289755
This builds on r217342, which added the infrastructure to compute known bits
using assumptions (@llvm.assume calls). That original commit added only a few
patterns (to catch common cases related to determining pointer alignment); this
change adds several other patterns for simple cases.
r217342 contained that, for assume(v & b = a), bits in the mask
that are known to be one, we can propagate known bits from the a to v. It also
had a known-bits transfer for assume(a = b). This patch adds:
assume(~(v & b) = a) : For those bits in the mask that are known to be one, we
can propagate inverted known bits from the a to v.
assume(v | b = a) : For those bits in b that are known to be zero, we can
propagate known bits from the a to v.
assume(~(v | b) = a): For those bits in b that are known to be zero, we can
propagate inverted known bits from the a to v.
assume(v ^ b = a) : For those bits in b that are known to be zero, we can
propagate known bits from the a to v. For those bits in
b that are known to be one, we can propagate inverted
known bits from the a to v.
assume(~(v ^ b) = a) : For those bits in b that are known to be zero, we can
propagate inverted known bits from the a to v. For those
bits in b that are known to be one, we can propagate
known bits from the a to v.
assume(v << c = a) : For those bits in a that are known, we can propagate them
to known bits in v shifted to the right by c.
assume(~(v << c) = a) : For those bits in a that are known, we can propagate
them inverted to known bits in v shifted to the right by c.
assume(v >> c = a) : For those bits in a that are known, we can propagate them
to known bits in v shifted to the right by c.
assume(~(v >> c) = a) : For those bits in a that are known, we can propagate
them inverted to known bits in v shifted to the right by c.
assume(v >=_s c) where c is non-negative: The sign bit of v is zero
assume(v >_s c) where c is at least -1: The sign bit of v is zero
assume(v <=_s c) where c is negative: The sign bit of v is one
assume(v <_s c) where c is non-positive: The sign bit of v is one
assume(v <=_u c): Transfer the known high zero bits
assume(v <_u c): Transfer the known high zero bits (if c is know to be a power
of 2, transfer one more)
A small addition to InstCombine was necessary for some of the test cases. The
problem is that when InstCombine was simplifying and, or, etc. it would fail to
check the 'do I know all of the bits' condition before checking less specific
conditions and would not fully constant-fold the result. I'm not sure how to
trigger this aside from using assumptions, so I've just included the change
here.
llvm-svn: 217343