Summary:
The improvements to the LegalizerInfo discussed in D42244 require that
LegalizerInfo::LegalizeAction be available for use in other classes. As such,
it needs to be moved out of LegalizerInfo. This has been done separately to the
next patch to minimize the noise in that patch.
llvm-svn: 323669
Microsoft Visual Studio rejects the static constexpr static list of
atoms even though it's valid C++. This provides a workaround to unbreak
the bots.
llvm-svn: 323667
MSVC complains that the constexpr "expression did not evaluate to a
constant". Trying to make it happy by adding a `const` specifier as
suggested in https://stackoverflow.com/questions/37574343.
llvm-svn: 323659
This patch adds support for generating accelerator tables in dsymutil.
This feature was already present in our internal repository but not yet
upstreamed because it requires changes to the Apple accelerator table
implementation.
Differential revision: https://reviews.llvm.org/D42501
llvm-svn: 323655
This patch renames DwarfAccelTable.{h,cpp} to AccelTable.{h,cpp} and
moves the header to the include dir so it is accessible by the
dsymutil implementation.
Differential revision: https://reviews.llvm.org/D42529
llvm-svn: 323654
This patch refactors the way data is stored in the accelerator table and
makes them truly generic. There have been several attempts to do this in
the past:
- D8215 & D8216: Using a union and partial hardcoding.
- D11805: Using inheritance.
- D42246: Using a callback.
In the end I didn't like either of them, because for some reason or
another parts of it felt hacky or decreased runtime performance. I
didn't want to completely rewrite them as I was hoping that we could
reuse parts for the successor in the DWARF standard. However, it seems
less and less likely that there will be a lot of opportunities for
sharing code and/or an interface.
Originally I choose to template the whole class, because it introduces
no performance overhead compared to the original implementation.
We ended up settling on a hybrid between a templated method and a
virtual call to emit the data. The motivation is that we don't want to
increase code size for a feature that should soon be superseded by the
DWARFv5 accelerator tables. While the code will continue to be used for
compatibility, it won't be on the hot path. Furthermore this does not
regress performance compared to Apple's internal implementation that
already uses virtual calls for this.
A quick summary for why these changes are necessary: dsymutil likes to
reuse the current implementation of the Apple accelerator tables.
However, LLDB expects a slightly different interface than what is
currently emitted. Additionally, in dsymutil we only have offsets and no
actual DIEs.
Although the patch suggests a lot of code has changed, this change is
pretty straightforward:
- We created an abstract class `AppleAccelTableData` to serve as an
interface for the different data classes.
- We created two implementations of this class, one for type tables and
one for everything else. There will be a third one for dsymutil that
takes just the offset.
- We use the supplied class to deduct the atoms for the header which
makes the structure of the table fully self contained, although not
enforced by the interface as was the case for the fully templated
approach.
- We renamed the prefix from DWARF- to Apple- to make space for the
future implementation of .debug_names.
This change is NFC and relies on the existing tests.
Differential revision: https://reviews.llvm.org/D42334
llvm-svn: 323653
Summary:
When emitting the location for a global variable with fragmented debug
expressions, make sure that the offset pieces, which represent
optimized-out parts of the variable, are emitted before their succeeding
fragments' expressions. Previously, if the succeeding fragment's
location was a symbol, the offset piece was emitted after, rather than
before, that symbol's expression. This effectively meant that the symbols
were associated with the wrong parts of the variable.
This fixes PR36085.
Patch by: David Stenberg
Reviewers: aprantl, probinson, dblaikie
Reviewed By: aprantl
Subscribers: JDevlieghere, llvm-commits
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D42527
llvm-svn: 323644
Summary:
There's a check in the code to only check getSetCCResultType after LegalOperations or if the type is MVT::i1. But the i1 check is only allowing scalar types through. I think it should check that the scalar type is MVT::i1 so that it will work for vectors.
The changed test already does this combine with AVX512VL where getSetCCResultType returns vXi1. But with avx512f and no VLX getSetCCResultType returns a type matching the width of the input type.
Reviewers: spatel, RKSimon
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42619
llvm-svn: 323631
This patch moves the DJB hash to support. This is consistent with other
hashing algorithms living there. The hash is used by the DWARF
accelerator tables. We're doing this now because the hashing function is
needed by dsymutil and we don't want to link against libBinaryFormat.
Differential revision: https://reviews.llvm.org/D42594
llvm-svn: 323616
The code was using getValueSizeInBits and combining with the result of a call to DAG.ComputeNumSignBits. But for vector types getValueSizeInBits returns the width of the full vector while ComputeNumSignBits is going to give a number no larger than the width of a single element. So we should be using getScalarValueSizeInBits to get the element width.
llvm-svn: 323583
We weren't converting the immediate ConstantFP during legalization, which caused
the wrong bit patterns to be emitted for half type FP constants.
Fixes PR36106.
llvm-svn: 323582
One common source of blocks with no successors is calls to noreturn
functions; we want to preserve pristine registers in case they throw an
exception.
The whole pristine register thing is messy (we should really prefer to
explicitly model registers), but this fills a hole in the model for now.
Fixes https://bugs.llvm.org/show_bug.cgi?id=36073.
Differential Revision: https://reviews.llvm.org/D42509
llvm-svn: 323559
Previously some targets printed their own message at the start of Select to indicate what they were selecting. For the targets that didn't, it means there was no print of the root node before any custom handling in the target executed. So if the target did something custom and never called SelectNodeCommon, no print would be made. For the targets that did print a message in Select, if they didn't custom handle a node SelectNodeCommon would reprint the root node before walking the isel table.
It seems better to just print the message before the call to Select so all targets behave the same. And then remove the root node printing from SelectNodeCommon and just leave a message that says we're starting the table search.
There were also some oddities in blank line behavior. Usually due to a \n after a call to SelectionDAGNode::dump which already inserted a new line.
llvm-svn: 323551
Summary: This is the producer side for DWARF v5 string offsets tables. The reader/consumer
side was committed with r321295. All compile and type units in a module share a
contribution to the string offsets table. Indirect strings use the strx{1,2,3,4} index forms.
Reviewers: dblaikie, aprantl, JDevliegehere
Differential Revision: https://reviews.llvm.org/D42021
llvm-svn: 323546
Add support for printing / parsing the addrspace of a MachineMemOperand.
Fixes PR35970.
Differential Revision: https://reviews.llvm.org/D42502
llvm-svn: 323521
https://reviews.llvm.org/D41373
The various components are
GICombinerHelper contains transformations that are common to all
targets. Targets can pick and choose which transformations (at
function/opcode granularity) each pass uses via configuring a
GICombinerInfo.
GICombiner contains some common code and it does the traversal,
driving of combines, worklist management and iterating until
convergence.
GICombinerInfo is an interface with a virtual method called combine.
The combiner info will allow targets to pick and choose (or
implement their own specific combines). CombineInfos can make
use of available combines in GICombineHelper to configure the
transformations for a particular pass. Currently this approach allows
cherry picking transformations from helpers (at function/opcode
granularity) and also allows early returning on specific
transformations. Targets also get to prioritize whether target specific
combines run before/after the opt-in generic combines. Ideally we would
like this part to be configured by both C++ and Tablegen. The
CombinerInfo also has a field which indicates how to deal with
IllegalOps (ie - should we allow to create them/or legalize them?).
A CombinerPass would configure a CombinerInfo, create the GICombiner
with the Info, and call
GICombiner::combineMachineInstrs(MachineFunction&).
This organization is very similar to the GISelLegalizer.
llvm-svn: 323392
Apparently checking the pass structure isn't enough to ensure that we don't fall
back to FastISel, as it's set up as part of the SelectionDAGISel.
llvm-svn: 323369
Summary:
`getAction(const InstrAspect &) const` breaks encapsulation by exposing
the smaller components that are used to decide how to legalize an
instruction.
This is a problem because we need to change the implementation of
LegalizerInfo so that it's able to describe particular type combinations
rather than just cartesian products of types.
For example, declaring the following
setAction({..., 0, s32}, Legal)
setAction({..., 0, s64}, Legal)
setAction({..., 1, s32}, Legal)
setAction({..., 1, s64}, Legal)
currently declares these type combinations as legal:
{s32, s32}
{s64, s32}
{s32, s64}
{s64, s64}
but we currently have no means to say that, for example, {s64, s32} is
not legal. Some operations such as G_INSERT/G_EXTRACT/G_MERGE_VALUES/
G_UNMERGE_VALUES has relationships between the types that are currently
described incorrectly.
Additionally, G_LOAD/G_STORE currently have no means to legalize non-atomics
differently to atomics. The necessary information is in the MMO but we have no
way to use this in the legalizer. Similarly, there is currently no way for the
register type and the memory type to differ so there is no way to cleanly
represent extending-load/truncating-store in a way that can't be broken by
optimizers (resulting in illegal MIR).
This patch introduces LegalityQuery which provides all the information
needed by the legalizer to make a decision on whether something is legal
and how to legalize it.
Reviewers: ab, t.p.northover, qcolombet, rovka, aditya_nandakumar, volkan, reames, bogner
Reviewed By: bogner
Subscribers: bogner, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D42244
llvm-svn: 323342
Summary:
This patch implements the codegen of DWARF debug info for non-constant
'count' fields for DISubrange.
This is patch [2/3] in a series to extend LLVM's DISubrange Metadata
node to support debugging of C99 variable length arrays and vectors with
runtime length like the Scalable Vector Extension for AArch64. It is
also a first step towards representing more complex cases like arrays
in Fortran.
Reviewers: echristo, pcc, aprantl, dexonsmith, clayborg, kristof.beyls, dblaikie
Reviewed By: aprantl
Subscribers: fhahn, aemerson, rengolin, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D41696
llvm-svn: 323323
Summary:
This patch extends the DISubrange 'count' field to take either a
(signed) constant integer value or a reference to a DILocalVariable
or DIGlobalVariable.
This is patch [1/3] in a series to extend LLVM's DISubrange Metadata
node to support debugging of C99 variable length arrays and vectors with
runtime length like the Scalable Vector Extension for AArch64. It is
also a first step towards representing more complex cases like arrays
in Fortran.
Reviewers: echristo, pcc, aprantl, dexonsmith, clayborg, kristof.beyls, dblaikie
Reviewed By: aprantl
Subscribers: rnk, probinson, fhahn, aemerson, rengolin, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D41695
llvm-svn: 323313
For the included test case, the DAG transformation
concat_vectors(scalar, undef) -> scalar_to_vector(sclr)
would attempt to create a v2i32 vector for a v9i8
concat_vector. Bail out to avoid creating a bitcast with
mismatching sizes later on.
Differential Revision: https://reviews.llvm.org/D42379
llvm-svn: 323312
Merging such globals loses the dllexport attribute. Add a test
to check that normal globals still are merged.
Differential Revision: https://reviews.llvm.org/D42127
llvm-svn: 323307
https://reviews.llvm.org/D42402
A lot of these copies are useless (copies b/w VRegs having the same
regclass) and should be cleaned up.
llvm-svn: 323291
Summary:
This adds an -mllvm flag that forces the use of a runtime function call to
get the unsafe stack pointer, the same that is currently used on non-x86, non-aarch64 android.
The call may be inlined.
Reviewers: pcc
Subscribers: aemerson, kristof.beyls, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D37405
llvm-svn: 323259
Fix a bug in ScheduleDAGMILive::scheduleMI which causes BotRPTracker not tracking CurrentBottom in some rare cases involving llvm.dbg.value.
This issues causes amdgcn target to assert when compiling some user codes with -g.
Differential Revision: https://reviews.llvm.org/D42394
llvm-svn: 323214
If in complex addressing mode the difference is in GV then
base reg should not be installed because we plan to use
base reg as a merge point of different GVs.
This is a fix for PR35980.
Reviewers: reames, john.brawn, santosh
Reviewed By: john.brawn
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42230
llvm-svn: 323192
Summary:
First, we need to explain the core of the vulnerability. Note that this
is a very incomplete description, please see the Project Zero blog post
for details:
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
The basis for branch target injection is to direct speculative execution
of the processor to some "gadget" of executable code by poisoning the
prediction of indirect branches with the address of that gadget. The
gadget in turn contains an operation that provides a side channel for
reading data. Most commonly, this will look like a load of secret data
followed by a branch on the loaded value and then a load of some
predictable cache line. The attacker then uses timing of the processors
cache to determine which direction the branch took *in the speculative
execution*, and in turn what one bit of the loaded value was. Due to the
nature of these timing side channels and the branch predictor on Intel
processors, this allows an attacker to leak data only accessible to
a privileged domain (like the kernel) back into an unprivileged domain.
The goal is simple: avoid generating code which contains an indirect
branch that could have its prediction poisoned by an attacker. In many
cases, the compiler can simply use directed conditional branches and
a small search tree. LLVM already has support for lowering switches in
this way and the first step of this patch is to disable jump-table
lowering of switches and introduce a pass to rewrite explicit indirectbr
sequences into a switch over integers.
However, there is no fully general alternative to indirect calls. We
introduce a new construct we call a "retpoline" to implement indirect
calls in a non-speculatable way. It can be thought of loosely as
a trampoline for indirect calls which uses the RET instruction on x86.
Further, we arrange for a specific call->ret sequence which ensures the
processor predicts the return to go to a controlled, known location. The
retpoline then "smashes" the return address pushed onto the stack by the
call with the desired target of the original indirect call. The result
is a predicted return to the next instruction after a call (which can be
used to trap speculative execution within an infinite loop) and an
actual indirect branch to an arbitrary address.
On 64-bit x86 ABIs, this is especially easily done in the compiler by
using a guaranteed scratch register to pass the target into this device.
For 32-bit ABIs there isn't a guaranteed scratch register and so several
different retpoline variants are introduced to use a scratch register if
one is available in the calling convention and to otherwise use direct
stack push/pop sequences to pass the target address.
This "retpoline" mitigation is fully described in the following blog
post: https://support.google.com/faqs/answer/7625886
We also support a target feature that disables emission of the retpoline
thunk by the compiler to allow for custom thunks if users want them.
These are particularly useful in environments like kernels that
routinely do hot-patching on boot and want to hot-patch their thunk to
different code sequences. They can write this custom thunk and use
`-mretpoline-external-thunk` *in addition* to `-mretpoline`. In this
case, on x86-64 thu thunk names must be:
```
__llvm_external_retpoline_r11
```
or on 32-bit:
```
__llvm_external_retpoline_eax
__llvm_external_retpoline_ecx
__llvm_external_retpoline_edx
__llvm_external_retpoline_push
```
And the target of the retpoline is passed in the named register, or in
the case of the `push` suffix on the top of the stack via a `pushl`
instruction.
There is one other important source of indirect branches in x86 ELF
binaries: the PLT. These patches also include support for LLD to
generate PLT entries that perform a retpoline-style indirection.
The only other indirect branches remaining that we are aware of are from
precompiled runtimes (such as crt0.o and similar). The ones we have
found are not really attackable, and so we have not focused on them
here, but eventually these runtimes should also be replicated for
retpoline-ed configurations for completeness.
For kernels or other freestanding or fully static executables, the
compiler switch `-mretpoline` is sufficient to fully mitigate this
particular attack. For dynamic executables, you must compile *all*
libraries with `-mretpoline` and additionally link the dynamic
executable and all shared libraries with LLD and pass `-z retpolineplt`
(or use similar functionality from some other linker). We strongly
recommend also using `-z now` as non-lazy binding allows the
retpoline-mitigated PLT to be substantially smaller.
When manually apply similar transformations to `-mretpoline` to the
Linux kernel we observed very small performance hits to applications
running typical workloads, and relatively minor hits (approximately 2%)
even for extremely syscall-heavy applications. This is largely due to
the small number of indirect branches that occur in performance
sensitive paths of the kernel.
When using these patches on statically linked applications, especially
C++ applications, you should expect to see a much more dramatic
performance hit. For microbenchmarks that are switch, indirect-, or
virtual-call heavy we have seen overheads ranging from 10% to 50%.
However, real-world workloads exhibit substantially lower performance
impact. Notably, techniques such as PGO and ThinLTO dramatically reduce
the impact of hot indirect calls (by speculatively promoting them to
direct calls) and allow optimized search trees to be used to lower
switches. If you need to deploy these techniques in C++ applications, we
*strongly* recommend that you ensure all hot call targets are statically
linked (avoiding PLT indirection) and use both PGO and ThinLTO. Well
tuned servers using all of these techniques saw 5% - 10% overhead from
the use of retpoline.
We will add detailed documentation covering these components in
subsequent patches, but wanted to make the core functionality available
as soon as possible. Happy for more code review, but we'd really like to
get these patches landed and backported ASAP for obvious reasons. We're
planning to backport this to both 6.0 and 5.0 release streams and get
a 5.0 release with just this cherry picked ASAP for distros and vendors.
This patch is the work of a number of people over the past month: Eric, Reid,
Rui, and myself. I'm mailing it out as a single commit due to the time
sensitive nature of landing this and the need to backport it. Huge thanks to
everyone who helped out here, and everyone at Intel who helped out in
discussions about how to craft this. Also, credit goes to Paul Turner (at
Google, but not an LLVM contributor) for much of the underlying retpoline
design.
Reviewers: echristo, rnk, ruiu, craig.topper, DavidKreitzer
Subscribers: sanjoy, emaste, mcrosier, mgorny, mehdi_amini, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D41723
llvm-svn: 323155
1. ReachingDefsAnalysis - Allows to identify for each instruction what is the “closest” reaching def of a certain register. Used by BreakFalseDeps (for clearance calculation) and ExecutionDomainFix (for arbitrating conflicting domains).
2. ExecutionDomainFix - Changes the variant of the instructions in order to minimize domain crossings.
3. BreakFalseDeps - Breaks false dependencies.
4. LoopTraversal - Creatws a traversal order of the basic blocks that is optimal for loops (introduced in revision L293571). Both ExecutionDomainFix and ReachingDefsAnalysis use this to determine the order they will traverse the basic blocks.
This also included the following changes to ExcecutionDepsFix original logic:
1. BreakFalseDeps and ReachingDefsAnalysis logic no longer restricted by a register class.
2. ReachingDefsAnalysis tracks liveness of reg units instead of reg indices into a given reg class.
Additional changes in affected files:
1. X86 and ARM targets now inherit from ExecutionDomainFix instead of ExecutionDepsFix. BreakFalseDeps also was added to the passes they activate.
2. Comments and references to ExecutionDepsFix replaced with ExecutionDomainFix and BreakFalseDeps, as appropriate.
Additional refactoring changes will follow.
This commit is (almost) NFC.
The only functional change is that now BreakFalseDeps will break dependency for all register classes.
Since no additional instructions were added to the list of instructions that have false dependencies, there is no actual change yet.
In a future commit several instructions (and tests) will be added.
This is the first of multiple patches that fix bugzilla https://bugs.llvm.org/show_bug.cgi?id=33869
Most of the patches are intended at refactoring the existent code.
Additional relevant reviews:
https://reviews.llvm.org/D40331https://reviews.llvm.org/D40332https://reviews.llvm.org/D40333https://reviews.llvm.org/D40334
Differential Revision: https://reviews.llvm.org/D40330
Change-Id: Icaeb75e014eff96a8f721377783f9a3e6c679275
llvm-svn: 323087
This was completely broken, but hopefully fixed by this patch.
In cases where it is needed, a vector with non byte-sized elements is stored
by extracting, zero-extending, shift:ing and or:ing the elements into an
integer of the same width as the vector, which is then stored.
Review: Eli Friedman, Ulrich Weigand
https://reviews.llvm.org/D42100#inline-369520https://bugs.llvm.org/show_bug.cgi?id=35520
llvm-svn: 323042
`llvm.used` contains a list of pointers to named values which the
compiler, assembler, and linker are required to treat as if there is a
reference that they cannot see. Ensure that the symbols are preserved
by adding an explicit `-include` reference to the linker command.
llvm-svn: 323017
Previously, the DIBuilder didn't expose functionality to set its compile unit
in any other way than calling createCompileUnit. This meant that the outliner,
which creates new functions, had to create a new compile unit for its debug
info.
This commit adds an optional parameter in the DIBuilder's constructor which
lets you set its CU at construction.
It also changes the MachineOutliner so that it keeps track of the DISubprograms
for each outlined sequence. If debugging information is requested, then it
uses one of the outlined sequence's DISubprograms to grab a CU. It then uses
that CU to construct the DISubprogram for the new outlined function.
The test has also been updated to reflect this change.
See https://reviews.llvm.org/D42254 for more information. Also see the e-mail
discussion on D42254 in llvm-commits for more context.
llvm-svn: 322992
The second return value of ATOMIC_CMP_SWAP_WITH_SUCCESS is known to be a
boolean, and should therefore be treated by computeKnownBits just like
the second return values of SMULO / UMULO.
Differential Revision: https://reviews.llvm.org/D42067
llvm-svn: 322985