Klocwork static check:
Pointer from call to function `DebugLoc::operator DILocation *() const `
may be NULL and will be dereference in function `printExtendedName```
Patch by Shengchen Kan (skan)
Differential Revision: https://reviews.llvm.org/D61715
llvm-svn: 360317
This patch allows for expansion of ADDCARRY and SUBCARRY when the target does not support it.
Differential Revision: https://reviews.llvm.org/D61411
llvm-svn: 360303
as it was causing significant compile time regressions.
This reverts commit r359426 while we come up with testcases and additional ideas.
llvm-svn: 360301
This is extracted from the original draft of D61419 with some additional tests.
We don't currently get this in IR (it's conservatively turned into a NaN),
but presumably that'll get updated as we add real IR support for 'fneg'
rather than 'fsub -0.0, x'.
The x86-32 run shows the following, and I haven't looked further to see why,
but that seems to be independent:
Legalizing: t1: f32 = undef
Trying to expand node
Creating fp constant: t4: f32 = ConstantFP<0.000000e+00>
Differential Revision: https://reviews.llvm.org/D61516
llvm-svn: 360296
When assigning the definitions of an instruction we were updating
the available registers while walking the definitions. Some of
those definitions may be from physical registers and thus, they are
not available for other definitions to take, but by the time we see
that we may have already assign these registers to another
virtual register.
Fix that by walking through all the definitions and mark as unavailable
the physical register definitions, then do the virtual register assignments.
PR41790
llvm-svn: 360278
This patch adds support for calling selectFNeg for FNeg instructions in addition to the fsub idiom
Differential Revision: https://reviews.llvm.org/D61624
llvm-svn: 360273
Add a new function to do the endian check, as I will commit another patch later, which will also need the endian check.
Differential Revision: https://reviews.llvm.org/D61236
llvm-svn: 360226
Summary:
The DEBUG_TYPE of the default hazard recognizer should be updated to
match the DEBUG_TYPE of the machine-scheduler pass.
Reviewers: rampitec
Reviewed By: rampitec
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61359
llvm-svn: 360198
DWARF5, 2.12 20ff says that
Any debugging information entry representing a pointer or reference
type [may have a DW_AT_address_class attribute].
The existing code (https://reviews.llvm.org/D29670) seems to take a
quite literal interpretation of that wording. I don't see a reason why
an rvalue reference isn't a reference type in the spirit of that
paragraph. This patch allows rvalue references to also have address
spaces.
rdar://problem/50511483
Differential Revision: https://reviews.llvm.org/D61625
llvm-svn: 360176
When simplifying TokenFactors, we potentially iterate over all
operands of a large number of TokenFactors. This causes quadratic
compile times in some cases and the large token factors cause additional
scalability problems elsewhere.
This patch adds some limits to the number of nodes explored for the
cases mentioned above.
Reviewers: niravd, spatel, craig.topper
Reviewed By: niravd
Differential Revision: https://reviews.llvm.org/D61397
llvm-svn: 360171
Summary:
If fneg lowering for fsub -0.0, x fails we currently fall back to treating it as an fsub. This has different behavior for nans than the xor with sign bit trick we normally try to do. On X86, the xor trick for double fails fast-isel in 32-bit mode with sse2 due to 64 bit integer types not being available. With -O2 we would always use an xorpd for this case. If we use subsd, this creates an observable behavior difference between -O0 and -O2. So fall back to SelectionDAG if we can't fast-isel it, that way SelectionDAG will use the xorpd.
I believe this patch is restoring the behavior prior to r345295 from last October. This was missed then because our fast isel case in 32-bit mode aborted fast-isel earlier for another reason. But I've added new tests to cover that.
Reviewers: andrew.w.kaylor, cameron.mcinally, spatel, efriedma
Reviewed By: cameron.mcinally
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61622
llvm-svn: 360111
TypedDINodeRef<T> is a redundant wrapper of Metadata * that is actually a T *.
Accordingly, change DI{Node,Scope,Type}Ref uses to DI{Node,Scope,Type} * or their const variants.
This allows us to delete many resolve() calls that clutter the code.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D61369
llvm-svn: 360108
Summary:
When there are multiple instances of a forward decl record type, only the first one is emitted with a type index, because
the type is added to a map with a null type index. Avoid this by reordering so that forward decl types aren't added to the map.
Reviewers: rnk
Subscribers: aprantl, hiraditya, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61460
llvm-svn: 360101
The problem was that we were creating a CMOV64rr <TargetFrameIndex>, <TargetFrameIndex>. The entire point of a TFI is that address code is not generated, so there's no way to legalize/lower this. Instead, simply prevent it's creation.
Arguably, we shouldn't be using *Target*FrameIndices in StatepointLowering at all, but that's a much deeper change.
llvm-svn: 360090
It's possible to use the 'y' mmx constraint with a type narrower than 64-bits.
This patch supports this by bitcasting the mmx type to 64-bits and then
truncating to the desired type.
There are probably other missing type combinations we need to support, but this
is the case we have a bug report for.
Fixes PR41748.
Differential Revision: https://reviews.llvm.org/D61582
llvm-svn: 360069
Reverts "[X86] Remove (V)MOV64toSDrr/m and (V)MOVDI2SSrr/m. Use 128-bit result MOVD/MOVQ and COPY_TO_REGCLASS instead"
Reverts "[TargetLowering][AMDGPU][X86] Improve SimplifyDemandedBits bitcast handling"
Eric Christopher and Jorge Gorbe Moya reported some issues with these patches to me off list.
Removing the CodeGenOnly instructions has changed how fneg is handled during fast-isel with sse/sse2. We're now emitting fsub -0.0, x instead
moving to the integer domain(in a GPR), xoring the sign bit, and then moving back to xmm. This is because the fast isel table no longer
contains an entry for (f32/f64 bitcast (i32/i64)) so the target independent fneg code fails. The use of fsub changes the behavior of nan with
respect to -O2 codegen which will always use a pxor. NOTE: We still have a difference with double with -m32 since the move to GPR doesn't work
there. I'll file a separate PR for that and add test cases.
Since removing the CodeGenOnly instructions was fixing PR41619, I'm reverting r358887 which exposed that PR. Though I wouldn't be surprised
if that bug can still be hit independent of that.
This should hopefully get Google back to green. I'll work with Simon and other X86 folks to figure out how to move forward again.
llvm-svn: 360066
This addresses one half of https://bugs.llvm.org/show_bug.cgi?id=41635
by combining a VECREDUCE_AND/OR into VECREDUCE_UMIN/UMAX (if latter is
legal but former is not) for zero-or-all-ones boolean reductions (which
are detected based on sign bits).
Differential Revision: https://reviews.llvm.org/D61398
llvm-svn: 360054
Based on PR41748, not all cases are handled in this function.
llvm_unreachable is treated as an optimization hint than can prune code paths
in a release build. This causes weird behavior when PR41748 is encountered on a
release build. It appears to generate an fp_round instruction from the floating
point code.
Making this a report_fatal_error prevents incorrect optimization of the code
and will instead generate a message to file a bug report.
llvm-svn: 360008
Summary:
It is a common thing to loop over every `PHINode` in some `BasicBlock`
and change old `BasicBlock` incoming block to a new `BasicBlock` incoming block.
`replaceSuccessorsPhiUsesWith()` already had code to do that,
it just wasn't a function.
So outline it into a new function, and use it.
Reviewers: chandlerc, craig.topper, spatel, danielcdh
Reviewed By: craig.topper
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61013
llvm-svn: 359996
Summary:
There is `PHINode::getBasicBlockIndex()`, `PHINode::setIncomingBlock()`
and `PHINode::getNumOperands()`, but no function to replace every
specified `BasicBlock*` predecessor with some other specified `BasicBlock*`.
Clearly, there are a lot of places that could use that functionality.
Reviewers: chandlerc, craig.topper, spatel, danielcdh
Reviewed By: craig.topper
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61011
llvm-svn: 359995
This is a subset of the original commit from rL359879
which was reverted because it could crash when using the 'RemovedInstructions'
structure that enables delayed deletion of dead instructions. The motivating
compile-time win does not require that change though. We should get most of
that win from this change alone.
Using/updating a dominator tree to match math overflow patterns may be very
expensive in compile-time (because of the way CGP uses a DT), so just handle
the single-block case.
See post-commit thread for rL354298 for more details:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20190422/646276.html
Differential Revision: https://reviews.llvm.org/D61075
llvm-svn: 359969
Using/updating a dominator tree to match math overflow patterns may be very
expensive in compile-time (because of the way CGP uses a DT), so just handle
the single-block case.
Also, we were restarting the iterator loops when doing the overflow intrinsic
transforms by marking the dominator tree for update. That was done to prevent
iterating over a removed instruction. But we can postpone the deletion using
the existing "RemovedInsts" structure, and that means we don't need to update
the DT.
See post-commit thread for rL354298 for more details:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20190422/646276.html
Differential Revision: https://reviews.llvm.org/D61075
llvm-svn: 359879
This is the second part of the commit fixing PR38917 (hoisting
partitially redundant machine instruction). Most of PRE (partitial
redundancy elimination) and CSE work is done on LLVM IR, but some of
redundancy arises during DAG legalization. Machine CSE is not enough
to deal with it. This simple PRE implementation works a little bit
intricately: it passes before CSE, looking for partitial redundancy
and transforming it to fully redundancy, anticipating that the next
CSE step will eliminate this created redundancy. If CSE doesn't
eliminate this, than created instruction will remain dead and eliminated
later by Remove Dead Machine Instructions pass.
The third part of the commit is supposed to refactor MachineCSE,
to make it more clear and to merge MachinePRE with MachineCSE,
so one need no rely on further Remove Dead pass to clear instrs
not eliminated by CSE.
First step: https://reviews.llvm.org/D54839
Fixes llvm.org/PR38917
Reviewers: RKSimon
Subscribers: hfinkel, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D56772
llvm-svn: 359870
We use to incorrectly use the store size instead of the alloc size when
creating the stack slot for allocas.
On aarch64 this can be demonstrated by allocating weirdly sized types.
For instance, in the added test case, we use an alloca for i19. We used
to allocate a slot of size 24-bit (19 rounded up to the next byte),
whereas we really want to use a full 32-bit slot for this type.
llvm-svn: 359856
The primary fix here is to WinException.cpp: we need to exclude jump
tables when computing the length of a function, or else we fail to
correctly compute the length. (We can only compute the number of bytes
consumed by certain assembler directives after the entire file is
parsed. ".p2align" is one of those directives, and is used by jump table
generation.)
The secondary fix, to MCWin64EH, is to make sure we don't silently
miscompile if we hit a similar situation in the future.
It's possible we could extend ARM64EmitUnwindInfo so it allows function
bodies that contain assembler directives, but that's a lot more
complicated; see the FIXME in MCWin64EH.cpp.
Fixes https://bugs.llvm.org/show_bug.cgi?id=41581 .
Differential Revision: https://reviews.llvm.org/D61095
llvm-svn: 359849
As a result of the underlying cause of PR41678 we created an ANY_EXTEND node with a scalar result type and v1i1 input type. Ideally we would have asserted for this instead of letting it go through to instruction selection and generate bad machine IR
Differential Revision: https://reviews.llvm.org/D61463
llvm-svn: 359836
The original patch was committed at rL359398 and reverted at rL359695 because of
infinite looping.
This includes a fix to check for a vector splat of "1.0" to avoid the infinite loop.
Original commit message:
This was originally part of D61028, but it's an independent diff.
If we try the repeated divisor reciprocal transform before producing an estimate sequence,
then we have an opportunity to use scalar fdiv. On x86, the trade-off is 1 divss vs. 5
vector FP ops in the default estimate sequence. On recent chips (Skylake, Ryzen), the
full-precision division is only 3 cycle throughput, so that's probably the better perf
default option and avoids problems from x86's inaccurate estimates.
The last 2 tests show that users still have the option to override the defaults by using
the function attributes for reciprocal estimates, but those patterns are potentially made
faster by converting the vector ops (including ymm ops) to scalar math.
Differential Revision: https://reviews.llvm.org/D61149
llvm-svn: 359793
We don't have FP exception limits in the IR constant folder for the binops (apart from strict ops),
so it does not make sense to have them here in the DAG either. Nothing else in the backend tries
to preserve exceptions (again outside of strict ops), so I don't see how this could have ever
worked for real code that cares about FP exceptions.
There are still cases (examples: unary opcodes in SDAG, FMA in IR) where we are trying (at least
partially) to preserve exceptions without even asking if the target supports FP exceptions. Those
should be corrected in subsequent patches.
Real support for FP exceptions requires several changes to handle the constrained/strict FP ops.
Differential Revision: https://reviews.llvm.org/D61331
llvm-svn: 359791
In preparation for supporting ILP32 on AArch64, this modifies the SelectionDAG
builder code so that pointers are allowed to have a larger type when "live" in
the DAG compared to memory.
Pointers get zero-extended whenever they are loaded, and truncated prior to
stores. In addition, a few not quite so obvious locations need updating:
* A GEP that has not been marked inbounds needs to enforce the IR-documented
2s-complement wrapping at the memory pointer size. Inbounds GEPs are
undefined if they overflow the address space, so no additional operations
are needed.
* Signed comparisons would give incorrect results if performed on the
zero-extended values.
This shouldn't affect CodeGen for now, but will become active when the AArch64
ILP32 support is committed.
llvm-svn: 359676
We don't have this restriction in IR, so it should not be here
either simply out of consistency. Code that wants to handle FP
exceptions is expected to use the 'strict' variants of these
nodes.
We don't get the frem case because frem by 0.0 produces NaN (invalid),
and that's the remaining check here (so the removed check for frem
was dead code AFAIK).
This is the only place in SDAG that uses "HasFPExceptions", so I
think we should remove that entirely as a follow-up patch.
llvm-svn: 359566