On z/OS, other error messages are not matched correctly in lit tests.
```
EDC5121I Invalid argument.
EDC5111I Permission denied.
```
This patch adds a lit substitution to fix it.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D95808
In binutils, the flag is defined for ELFOSABI_GNU and ELFOSABI_FREEBSD.
It can be used to mark a section as a GC root.
In practice, the flag has generic semantics and can be applied to many
EI_OSABI values, so we consider it generic.
Differential Revision: https://reviews.llvm.org/D95728
For x86-64 the REX.w prefix takes precedence over any other size
override (i.e. 0x66). Therefore, for x86-64 when REX.w is present set
'hasOpSize' to false to ensure that any size override is ignored.
Fixes PR48901.
Differential Revision: https://reviews.llvm.org/D95682
The switch controls both unused prefix warnings, and warnings about
functions which differ under different runs for a prefix, and, thus, end
up not having asserts for that prefix.
(If the latter case spans to all functions, then the former case kicks
in)
The switch is on by default, and can be disabled.
Differential Revision: https://reviews.llvm.org/D95829
This patch let the yaml encoding use Hex64 values for NumBlocks, BB AddressOffset, BB Size, and BB Metadata.
Additionally, it changes the decoded values in elf2yaml to uint64_t to match DataExtractor::getULEB128 return type.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D95767
This is consistent with BFD objcopy.
Previously llvm objcopy would allocate space for SHT_NOBITS sections
often resulting in enormous binary files.
New test case (binary-paddr.test %t6).
Reviewed By: jhenderson, MaskRay
Differential Revision: https://reviews.llvm.org/D95569
Part of the gold test added in 1487747e99
relies on more recent fixes to gold that fix the plugin behavior with
--export-dynamic-symbol and --dynamic-list. Extract those parts of the
new test into a v1.16 test.
Current dsymutil implementation of hasLiveMemoryLocation()/hasLiveAddressRange()
and applyValidRelocs() assume that calls should be done in certain order
(from first Dies to last). Multi-thread implementation might call these methods
in other order(it might process compilation units in order other than they are physically
located), so we remove restriction that searching for relocations should be done
in ascending order. This change does not introduce noticable performance degradation.
The testing results for clang binary:
golden-dsymutil/dsymutil 23787992
clang MD5: 5efa8fd9355ebf81b65f24db5375caa2
elapsed time=91sec
build-Release/bin/dsymutil 23855616
clang MD5: 5efa8fd9355ebf81b65f24db5375caa2
elapsed time=91sec
Differential Revision: https://reviews.llvm.org/D93106
Fixes https://bugs.llvm.org/show_bug.cgi?id=48882.
If the input file does not exist (or has a reading error), the
following code will crash if there are two or more input addresses.
```
auto ResOrErr = Symbolizer.symbolizeInlinedCode(
ModuleName, {Offset, object::SectionedAddress::UndefSection});
Printer << (error(ResOrErr) ? DILineInfo() : ResOrErr.get().getFrame(0));
```
For the first address, `symbolizeInlinedCode` returns an error.
For the second address, `symbolizeInlinedCode` returns an empty result
(not an error) and `.getFrame(0)` will crash.
Differential revision: https://reviews.llvm.org/D95609
This patch updates LTOCodeGenerator to use the utilities provided by
LTOBackend to run middle-end optimizations and backend code generation.
This is a first step towards unifying the code used by libLTO's C API
and the newer, C++ interface (see PR41541).
The immediate motivation is to allow using the new pass manager when
doing LTO using libLTO's C API, which is used on Darwin, among others.
With the changes, there are no codegen/stats differences when building
MultiSource/SPEC2000/SPEC2006 on Darwin X86 with LTO, compared
to without the patch.
Reviewed By: steven_wu
Differential Revision: https://reviews.llvm.org/D94487
Compact unwind entries have 8 bits for the encoding-table offset:
* offsets 0..126 reference the global commmon-encodings table, while
* offsets 127..255 reference a per-second-level-page table.
This diff teaches `llvm-objdump` to print this per-page encodings table.
Differential Revision: https://reviews.llvm.org/D93265
On z/OS, the following error message is not matched correctly in lit tests.
```
EDC5129I No such file or directory.
```
This patch uses a lit config substitution to check for platform specific error messages.
Reviewed By: muiez, jhenderson
Differential Revision: https://reviews.llvm.org/D95246
Fixes https://bugs.llvm.org/show_bug.cgi?id=43543
Currently we report "The file was not recognized as a valid object file" for BC files.
Also, we terminate dumping.
Instead we could report a better warning and try to continue dumping other files.
This is what this patch implements.
Differential revision: https://reviews.llvm.org/D95605
This patch adds the ability to evaluate the state machine for CIE and FDE unwind objects and produce a UnwindTable with all UnwindRow objects needed to unwind registers. It will also dump the UnwindTable for each CIE and FDE when dumping DWARF .debug_frame or .eh_frame sections in llvm-dwarfdump or llvm-objdump. This allows users to see what the unwind rows actually look like for a given CIE or FDE instead of just seeing a list of opcodes.
This patch adds new classes: UnwindLocation, RegisterLocations, UnwindRow, and UnwindTable.
UnwindLocation is a class that describes how to unwind a register or Call Frame Address (CFA).
RegisterLocations is a class that tracks registers and their UnwindLocations. It gets populated when parsing the DWARF call frame instruction opcodes for a unwind row. The registers are mapped from their register numbers to the UnwindLocation in a map.
UnwindRow contains the result of evaluating a row of DWARF call frame instructions for the CIE, or a row from a FDE. The CIE can produce a set of initial instructions that each FDE that points to that CIE will use as the seed for the state machine when parsing FDE opcodes. A UnwindRow for a CIE will not have a valid address, whille a UnwindRow for a FDE will have a valid address.
The UnwindTable is a class that contains a sorted (by address) vector of UnwindRow objects and is the result of parsing all opcodes in a CIE, or FDE. Parsing a CIE should produce a UnwindTable with a single row. Parsing a FDE will produce a UnwindTable with one or more UnwindRow objects where all UnwindRow objects have valid addresses. The rows in the UnwindTable will be sorted from lowest Address to highest after parsing the state machine, or an error will be returned if the table isn't sorted. To parse a UnwindTable clients can use the following methods:
static Expected<UnwindTable> UnwindTable::create(const CIE *Cie);
static Expected<UnwindTable> UnwindTable::create(const FDE *Fde);
A valid table will be returned if the DWARF call frame instruction opcodes have no encoding errors. There are a few things that can go wrong during the evaluation of the state machine and these create functions will catch and return them.
Differential Revision: https://reviews.llvm.org/D89845
A simple refactoring patch which let us use `DataExtractor::getSLEB128` rather than using a lambda function.
Differential Revision: https://reviews.llvm.org/D95158
Currently we don't allow the following definition:
```
Sections:
- Type: SectionHeaderTable
- Name: .foo
Type: SHT_PROGBITS
```
We report an error: "SectionHeaderTable can't be empty. Use 'NoHeaders' key to drop the section header table".
It was implemented in this way earlier, when `SectionHeaderTable`
was a dedicated key outside of the `Sections` list. And we did not
allow to select where the table is written.
Currently it makes sense to allow it, because a user might
want to place the default section header table at an arbitrary position,
e.g. before other sections. In this case it is not convenient and error prone
to require specifying all sections:
```
Sections:
- Type: SectionHeaderTable
Sections:
- Name: .foo
- Name: .strtab
- Name: .shstrtab
- Name: .foo
Type: SHT_PROGBITS
```
This patch allows empty SectionHeaderTable definitions.
Differential revision: https://reviews.llvm.org/D95341
This change brings up support of context-sensitive profiles in the format of extended binary. Existing sample profile reader/writer/merger code is being tweaked to reflect the fact of bracketed input contexts, like (`[...]`). The paired brackets are also needed in extbinary profiles because we don't yet have an otherwise good way to tell calling contexts apart from regular function names since the context delimiter `@` can somehow serve as a part of the C++ mangled names.
Reviewed By: wmi, wenlei
Differential Revision: https://reviews.llvm.org/D95547
Identify dynamically exported symbols (--export-dynamic[-symbol=],
--dynamic-list=, or definitions needed to preempt shared objects) and
prevent their LTO visibility from being upgraded.
This helps avoid use of whole program devirtualization when there may
be overrides in dynamic libraries.
Differential Revision: https://reviews.llvm.org/D91583
Imported functions and variable get the visibility from the module supplying the
definition. However, non-imported definitions do not get the visibility from
(ELF) the most constraining visibility among all modules (Mach-O) the visibility
of the prevailing definition.
This patch
* adds visibility bits to GlobalValueSummary::GVFlags
* computes the result visibility and propagates it to all definitions
Protected/hidden can imply dso_local which can enable some optimizations (this
is stronger than GVFlags::DSOLocal because the implied dso_local can be
leveraged for ELF -shared while default visibility dso_local has to be cleared
for ELF -shared).
Note: we don't have summaries for declarations, so for ELF if a declaration has
the most constraining visibility, the result visibility may not be that one.
Differential Revision: https://reviews.llvm.org/D92900
Before this change, when reading ELF file, elfabi determines number of
entries in .dynsym by reading the .gnu.hash section. This change makes
elfabi read section headers directly first. This change allows elfabi
works on ELF files which do not have .gnu.hash sections.
Differential Revision: https://reviews.llvm.org/D93362
There are two use cases.
Assembler
We have accrued some code gated on MCAsmInfo::useIntegratedAssembler(). Some
features are supported by latest GNU as, but we have to use
MCAsmInfo::useIntegratedAs() because the newer versions have not been widely
adopted (e.g. SHF_LINK_ORDER 'o' and 'unique' linkage in 2.35, --compress-debug-sections= in 2.26).
Linker
We want to use features supported only by LLD or very new GNU ld, or don't want
to work around older GNU ld. We currently can't represent that "we don't care
about old GNU ld". You can find such workarounds in a few other places, e.g.
Mips/MipsAsmprinter.cpp PowerPC/PPCTOCRegDeps.cpp X86/X86MCInstrLower.cpp
AArch64 TLS workaround for R_AARCH64_TLSLD_MOVW_DTPREL_* (PR ld/18276),
R_AARCH64_TLSLE_LDST8_TPREL_LO12 (https://bugs.llvm.org/show_bug.cgi?id=36727https://sourceware.org/bugzilla/show_bug.cgi?id=22969)
Mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER components (supported by LLD in D84001;
GNU ld feature request https://sourceware.org/bugzilla/show_bug.cgi?id=16833 may take a while before available).
This feature allows to garbage collect some unused sections (e.g. fragmented .gcc_except_table).
This patch adds `-fbinutils-version=` to clang and `-binutils-version` to llc.
It changes one codegen place in SHF_MERGE to demonstrate its usage.
`-fbinutils-version=2.35` means the produced object file does not care about GNU
ld<2.35 compatibility. When `-fno-integrated-as` is specified, the produced
assembly can be consumed by GNU as>=2.35, but older versions may not work.
`-fbinutils-version=none` means that we can use all ELF features, regardless of
GNU as/ld support.
Both clang and llc need `parseBinutilsVersion`. Such command line parsing is
usually implemented in `llvm/lib/CodeGen/CommandFlags.cpp` (LLVMCodeGen),
however, ClangCodeGen does not depend on LLVMCodeGen. So I add
`parseBinutilsVersion` to `llvm/lib/Target/TargetMachine.cpp` (LLVMTarget).
Differential Revision: https://reviews.llvm.org/D85474
We already set the `sh_entsize` field in a single place
for all non-implicit sections.
This patch reorders the logic slightly and with it
we finally have the only one place where the `sh_entsize` is set.
obj2yaml will not dump the `EntSize` key for `SHT_DYNSYM/SHT_SYMTAB` sections anymore,
when the value of `sh_entsize` is equal to `sizeof(Elf_Sym)`
Note that this also seems revealed an issue in llvm-objcopy:
Previously yaml2obj set the `sh_entsize` for the `.symtab` section to 0x18,
now we it sets it for `SHT_SYMTAB` sections, i.e. by type.
But the `llvm-objcopy/ELF/only-keep-debug.test` has a `.symtab` section of type `SHT_STRTAB`,
and now yaml2obj sets the `sh_entsize` to 0 for it.
I had to update the corresponding check lines for `ES`, but the behavior of
`llvm-objcopy` should be fixed instead I think.
I've added a TODO and a comment.
Differential revision: https://reviews.llvm.org/D95364
A default version (@@) is only available for defined symbols.
Currently we use "@@" for undefined symbols too.
This patch fixes the issue and improves our test case.
Differential revision: https://reviews.llvm.org/D95219
The llvm-dwp tool hard-codes the target triple to x86. Instead, deduce the
target triple from the object files being read.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D93749
This was discussed in D93678 thread.
Currently we have one special chunk - Fill.
This patch re implements the "SectionHeaderTable" key to become a special chunk too.
With that we are able to place the section header table at any location,
just like we place sections.
Differential revision: https://reviews.llvm.org/D95140
In c042aff886, unused FileCheck prefixes became an error, which exposed some testing bugs in four exegesis tests. I've tried my best to either fix the testing bugs, or expand the testing to cover more scenarios.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D95287
On z/OS, the following error message is not matched correctly in lit tests. This patch updates the CHECK expression to match the end period successfully.
```
EDC5129I No such file or directory.
```
Differential Revision: https://reviews.llvm.org/D94239
This makes the following improvements.
For `SHT_GNU_versym`:
* yaml2obj: set `sh_link` to index of `.dynsym` section automatically.
For `SHT_GNU_verdef`:
* yaml2obj: set `sh_link` to index of `.dynstr` section automatically.
* yaml2obj: set `sh_info` field automatically.
* obj2yaml: don't dump the `Info` field when its value matches the number of version definitions.
For `SHT_GNU_verneed`:
* yaml2obj: set `sh_link` to index of `.dynstr` section automatically.
* yaml2obj: set `sh_info` field automatically.
* obj2yaml: don't dump the `Info` field when its value matches the number of version dependencies.
Also, simplifies few test cases.
Differential revision: https://reviews.llvm.org/D94956
On z/OS, the error message "EDC5111I Permission denied." is not matched correctly in lit tests. This patch updates the check expression to match successfully.
Differential Revision: https://reviews.llvm.org/D94432
This patch handles cases where we have to save/restore the link register
into the stack and and load/store instruction which use the stack are
part of the outlined region. It checks that there will be no overflow
introduced by the new offset and fixup these instructions accordingly.
Differential Revision: https://reviews.llvm.org/D92934
On z/OS, the following error message is not matched correctly in lit tests. This patch updates the CHECK expression to match successfully.
```
EDC5129I No such file or directory.
```
Reviewed By: muiez
Differential Revision: https://reviews.llvm.org/D94239
`ELFDumper.cpp` implements the functionality that allows to get symbol versions.
It is used for dumping versioned symbols.
This helps to implement https://bugs.llvm.org/show_bug.cgi?id=48670 ("make llvm-nm -D print version names"):
we can move out and reuse the code from `ELFDumper.cpp`.
This is what this patch do: it moves the related functionality to `ELFFile<ELFT>`.
Differential revision: https://reviews.llvm.org/D94771
This change extends virtual unwinder to support pseudo probe in llvm-profgen. Please refer https://groups.google.com/g/llvm-dev/c/1p1rdYbL93s and https://reviews.llvm.org/D89707 for more context about CSSPGO and llvm-profgen.
**Implementation**
- Added `ProbeBasedCtxKey` derived from `ContextKey` for sample counter aggregation. As we need string splitting to infer the profile for callee function, string based context introduces more string handling overhead, here we just use probe pointer based context.
- For linear unwinding, as inline context is encoded in each pseudo probe, we don't need to go through each instruction to extract range sharing same inliner. So just record the range for the context.
- For probe based context, we should ignore the top frame probe since it will be extracted from the address range. we defer the extraction in `ProfileGeneration`.
- Added `PseudoProbeProfileGenerator` for pseudo probe based profile generation.
- Some helper function to get pseduo probe info(call probe, inline context) from profiled binary.
- Added regression test for unwinder's output
The pseudo probe based profile generation will be in the upcoming patch.
Test Plan:
ninja & ninja check-llvm
Differential Revision: https://reviews.llvm.org/D92896
This change implements pseudo probe decoding and disassembling for llvm-profgen/CSSPGO. Please see https://groups.google.com/g/llvm-dev/c/1p1rdYbL93s and https://reviews.llvm.org/D89707 for more context about CSSPGO and llvm-profgen.
**ELF section format**
Please see the encoding patch(https://reviews.llvm.org/D91878) for more details of the format, just copy the example here:
Two section(`.pseudo_probe_desc` and `.pseudoprobe` ) is emitted in ELF to support pseudo probe.
The format of `.pseudo_probe_desc` section looks like:
```
.section .pseudo_probe_desc,"",@progbits
.quad 6309742469962978389 // Func GUID
.quad 4294967295 // Func Hash
.byte 9 // Length of func name
.ascii "_Z5funcAi" // Func name
.quad 7102633082150537521
.quad 138828622701
.byte 12
.ascii "_Z8funcLeafi"
.quad 446061515086924981
.quad 4294967295
.byte 9
.ascii "_Z5funcBi"
.quad -2016976694713209516
.quad 72617220756
.byte 7
.ascii "_Z3fibi"
```
For each `.pseudoprobe` section, the encoded binary data consists of a single function record corresponding to an outlined function (i.e, a function with a code entry in the `.text` section). A function record has the following format :
```
FUNCTION BODY (one for each outlined function present in the text section)
GUID (uint64)
GUID of the function
NPROBES (ULEB128)
Number of probes originating from this function.
NUM_INLINED_FUNCTIONS (ULEB128)
Number of callees inlined into this function, aka number of
first-level inlinees
PROBE RECORDS
A list of NPROBES entries. Each entry contains:
INDEX (ULEB128)
TYPE (uint4)
0 - block probe, 1 - indirect call, 2 - direct call
ATTRIBUTE (uint3)
reserved
ADDRESS_TYPE (uint1)
0 - code address, 1 - address delta
CODE_ADDRESS (uint64 or ULEB128)
code address or address delta, depending on ADDRESS_TYPE
INLINED FUNCTION RECORDS
A list of NUM_INLINED_FUNCTIONS entries describing each of the inlined
callees. Each record contains:
INLINE SITE
GUID of the inlinee (uint64)
ID of the callsite probe (ULEB128)
FUNCTION BODY
A FUNCTION BODY entry describing the inlined function.
```
**Disassembling**
A switch `--show-pseudo-probe` is added to use along with `--show-disassembly` to print disassembly code with pseudo probe directives.
For example:
```
00000000002011a0 <foo2>:
2011a0: 50 push rax
2011a1: 85 ff test edi,edi
[Probe]: FUNC: foo2 Index: 1 Type: Block
2011a3: 74 02 je 2011a7 <foo2+0x7>
[Probe]: FUNC: foo2 Index: 3 Type: Block
[Probe]: FUNC: foo2 Index: 4 Type: Block
[Probe]: FUNC: foo Index: 1 Type: Block Inlined: @ foo2:6
2011a5: 58 pop rax
2011a6: c3 ret
[Probe]: FUNC: foo2 Index: 2 Type: Block
2011a7: bf 01 00 00 00 mov edi,0x1
[Probe]: FUNC: foo2 Index: 5 Type: IndirectCall
2011ac: ff d6 call rsi
[Probe]: FUNC: foo2 Index: 4 Type: Block
2011ae: 58 pop rax
2011af: c3 ret
```
**Implementation**
- `PseudoProbeDecoder` is added in ProfiledBinary as an infra for the decoding. It decoded the two section and generate two map: `GUIDProbeFunctionMap` stores all the `PseudoProbeFunction` which is the abstraction of a general function. `AddressProbesMap` stores all the pseudo probe info indexed by its address.
- All the inline info is encoded into binary as a trie(`PseudoProbeInlineTree`) and will be constructed from the decoding. Each pseudo probe can get its inline context(`getInlineContext`) by traversing its inline tree node backwards.
Test Plan:
ninja & ninja check-llvm
Differential Revision: https://reviews.llvm.org/D92334
This re-lands e5553b9a6a with two small fixes to the tests:
- Don't touch the source directory in debug-map-parsing.test but
instead copy everything over in a temporary directory in
timestamp-mismatch.test.
- Don't redirect stderr to stdout to avoid the output getting
intertwined in extern-alias.test.
This reverts commit e5553b9a6a.
Tests are not allowed to modify the source. Please figure out a way to
use %t rather than dynamically modifying the inputs.
This reuses the code from yaml2obj (moves it to ELFYAML.h).
With it we can set the `sh_entsize` in a single place in `obj2yaml`.
Note that it also fixes a bug of `yaml2obj`: we do not
set the `sh_entsize` field for the `SHT_ARM_EXIDX` section properly.
Differential revision: https://reviews.llvm.org/D93858
Currently we don't support multiple SHT_SYMTAB_SHNDX sections
and the DT_SYMTAB_SHNDX tag currently.
This patch implements it and fixes the
https://bugs.llvm.org/show_bug.cgi?id=43991.
I had to introduce the `struct DataRegion` to ELF.h,
it is used to represent a region that might have no known size.
It is needed, because we don't know the size of the extended
section indices table when it is located via DT_SYMTAB_SHNDX.
In this case we still want to validate that we don't read
past the end of the file.
Differential revision: https://reviews.llvm.org/D92923
Currently dsymutil will silently fail when processing binaries with
Dwarf 5 debug info. This patch adds rudimentary support for Dwarf 5 in
dsymutil.
- Recognize relocations in the debug_addr section.
- Recognize (a subset of) Dwarf 5 form values.
- Emits valid Dwarf 5 compile unit header chains.
To simplify things (and avoid having to emit indexed sections) I decided
to emit the relocated addresses directly in the debug info section.
- DW_FORM_strx gets relocated and rewritten to DW_FORM_strp
- DW_FORM_addrx gets relocated and rewritten to DW_FORM_addr
Obviously there's a lot of work left, but this should be a step in the
right direction.
rdar://62345491
Differential revision: https://reviews.llvm.org/D94323
Copy over the __eh_frame from the binary into the dSYM. This helps
kernel developers that are working with only dSYMs (i.e. no binaries)
when debugging a core file. This only kicks in when the __eh_frame
exists in the linked binary. Most of the time ld64 will remove the
section in favor of compact unwind info. When it is emitted, it's
generally small enough and should not bloat the dSYM.
rdar://69774935
Differential revision: https://reviews.llvm.org/D94460
Add a warning when the timestmap doesn't match between the object file
and the debug map entry. We were already emitting such warnings for
archive members and swift interface files. This patch also unifies the
warning across all three.
rdar://65614640
Differential revision: https://reviews.llvm.org/D94536
Currently we crash when we have an object with SHT_SYMTAB/SHT_DYNSYM sections
of size 0.
With this patch instead of the crash we start to dump them properly.
Differential revision: https://reviews.llvm.org/D93697
We have the following issues related to group sections:
1) yaml2obj is unable to set the custom `sh_entsize` value, because the `EntSize`
key is currently ignored.
2) obj2yaml is unable to dump the group section which `sh_entsize != 4`.
3) obj2yaml always dumps the "EntSize" for group sections, though
usually we are trying to omit dumping default values when dumping keys.
I.e. we should not print the "EntSize" key when `sh_entsize` == 4.
This patch fixes (1),(3) and adds the test case to document the behavior of (2).
Differential revision: https://reviews.llvm.org/D93854
On z/OS, the error message "EDC5111I Permission denied." is not matched correctly in lit tests. This patch updates the check expression to match successfully.
Reviewed By: fanbo-meng
Differential Revision: https://reviews.llvm.org/D94432
It has multiple issues fixed by this patch:
1) It shouldn't test how llvm-readelf/yaml2obj works.
2) It should use "-NEXT" prefix for check lines.
3) It can use YAML macros, that allows to use a single YAML.
4) It should probably test the case when a group member is a null section.
Differential revision: https://reviews.llvm.org/D93753
As was mentioned in comments here:
https://reviews.llvm.org/D92636#inline-864967
we are not consistent and sometimes index things from 0, but sometimes
from 1 in warnings.
This patch fixes 2 places: messages reported for
program headers and messages reported for relocations.
Differential revision: https://reviews.llvm.org/D93805
`getUniquedSectionName(const Elf_Shdr *Sec)` assumes that
`Sec` is not `nullptr`.
I've found one place in `getUniquedSymbolName` where it is
not true (because of that we crash when trying to dump
unnamed null section symbols).
Patch fixes the crash and changes the signature of the
`getUniquedSectionName` section to accept a reference.
Differential revision: https://reviews.llvm.org/D93754
As the actual windows unwinder doesn't support this case, don't
pretend that it is supported when dumping the generated unwind info
either, even if it would be possible to interpret it as something
sensible.
This should reduce the risk of us emitting such a case in code
(although it's unlikely as long as the unwind info is generated
through the SEH opcodes, as the opcodes can't describe this case).
Differential Revision: https://reviews.llvm.org/D91529
This patch fixes linker behavior when archive is linked with other inputs
as a library (i.e. when --only-needed option is specified). In this case library
is expected to be normally linked first into a separate module and only after
that linker should import required symbols from the linked library module.
Reviewed By: tra
Differential Revision: https://reviews.llvm.org/D92535
This is an enhancement to LLVM Source-Based Code Coverage in clang to track how
many times individual branch-generating conditions are taken (evaluate to TRUE)
and not taken (evaluate to FALSE). Individual conditions may comprise larger
boolean expressions using boolean logical operators. This functionality is
very similar to what is supported by GCOV except that it is very closely
anchored to the ASTs.
Differential Revision: https://reviews.llvm.org/D84467
Current update_llc_test_checks.py cannot generate checks for AIX
(powerpc64-ibm-aix-xcoff) properly. Assembly generated is little bit
different from Linux. So I use begin function comment here to capture
function name.
Reviewed By: MaskRay, steven.zhang
Differential Revision: https://reviews.llvm.org/D93676
The old CPU model only had MLA->MLA forwarding. I added some missing
MUL->MLA read advances and a missing absolute diff accumulator read
advance according to the Cortex A57 Software Optimization Guide.
The patch improves performance in EEMBC rgbyiqv2 by about 6%-7% and
spec2006/milc by 8% (repeated runs on multiple devices), causes no
significant regressions (none in SPEC).
Differential Revision: https://reviews.llvm.org/D92296
This change adds '--write-if-changed' flag to llvm-elfabi tool. When
enabled, llvm-elfabi will not overwrite the existing file if the
content of the file will not be changed, which preserves the
timestamp.
Differential Revision: https://reviews.llvm.org/D92902
This change adds '--write-if-changed' flag to llvm-elfabi tool. When
enabled, llvm-elfabi will not overwrite the existing file if the
content of the file will not be changed, which preserves the
timestamp.
Differential Revision: https://reviews.llvm.org/D92902
This is similar to D93760.
When something is wrong with the hash table header we dump
its context as a raw data.
Currently we have the calculation overflow issue and it is possible to
bypass the validation we have (and crash).
The patch fixes it.
Differential revision: https://reviews.llvm.org/D93799
It was discussed in D92545 that we might want to improve messages
reported when something is wrong with the stack size section.
This patch does it.
Differential revision: https://reviews.llvm.org/D93802
When something is wrong with the GNU hash table header we dump
its context as a raw data.
Currently we have the calculation overflow issue and it is possible to
bypass the validation we have (and crash).
The patch fixes it.
Differential revision: https://reviews.llvm.org/D93760
Currently llvm-readelf might print "OS Specific/Processor Specific/<unknown>"
hint when dumping the ELF file type. The patch teaches llvm-readobj to do the same.
This fixes https://bugs.llvm.org/show_bug.cgi?id=40868
I am removing `Object/elf-unknown-type.test` test because it is not in the right place,
it is outdated and very limited.
The `readobj/ELF/file-types.test` checks the functionality much better.
Differential revision: https://reviews.llvm.org/D93689
These properties aren't additive. They are closer to ReadOnly and
WriteOnly. The default is ReadWrite. ReadMem cancels the write property and
WriteMem cancels the read property. Combining them leaves neither.
This patch checks that when we process WriteMem, the Mod flag is
still set. And for ReadMem we check that the Ref flag set still set.
I've updated 2 target intrinsics that were combining these properties.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D93571
These instructions read their inputs from fixed registers rather
than using a modrm byte. We shouldn't require the user to list them
when parsing assembly. This matches the GNU assembler.
This patch adds InstAliases so we can accept either form. It also
changes the printing code to use the form without registers. This
will change the behavior of llvm-objdump, but should be consistent
with binutils objdump. This also matches what we already do in LLVM for
clzero and monitorx which also used fixed registers.
I need to add and improve tests before this can be commited. The
disassembler tests exist, but weren't checking the fixed register
so they pass before and after this change.
Fixes https://github.com/ClangBuiltLinux/linux/issues/1216
Differential Revision: https://reviews.llvm.org/D93524
Currently, `ELFFile<ELFT>::getEntry` does not check an index of
an entry. Because of that the code might read past the end of the symbol
table silently. I've added a test to `llvm-readobj\ELF\relocations.test`
to demonstrate the possible issue. Also, I've added a unit test for
this method.
After this change, `getEntry` stops reporting the section index and
reuses the `getSectionContentsAsArray` method, which already has
all the validation needed. Our related warnings now provide
more and better context sometimes.
Differential revision: https://reviews.llvm.org/D93209
It mimics the GNU readelf where it prints a [VARIANT_PCS] for symbols
with st_other with STO_AARCH64_VARIANT_PCS.
Reviewed By: grimar, MaskRay
Differential Revision: https://reviews.llvm.org/D93044
This change enables pseudo-probe-based sample counts to be consumed by the sample profile loader under the regular `-fprofile-sample-use` switch with minimal adjustments to the existing sample file formats. After the counts are imported, a probe helper, aka, a `PseudoProbeManager` object, is automatically launched to verify the CFG checksum of every function in the current compilation against the corresponding checksum from the profile. Mismatched checksums will cause a function profile to be slipped. A `SampleProfileProber` pass is scheduled before any of the `SampleProfileLoader` instances so that the CFG checksums as well as probe mappings are available during the profile loading time. The `PseudoProbeManager` object is set up right after the profile reading is done. In the future a CFG-based fuzzy matching could be done in `PseudoProbeManager`.
Samples will be applied only to pseudo probe instructions as well as probed callsites once the checksum verification goes through. Those instructions are processed in the same way that regular instructions would be processed in the line-number-based scenario. In other words, a function is processed in a regular way as if it was reduced to just containing pseudo probes (block probes and callsites).
**Adjustment to profile format **
A CFG checksum field is being added to the existing AutoFDO profile formats. So far only the text format and the extended binary format are supported. For the text format, a new line like
```
!CFGChecksum: 12345
```
is added to the end of the body sample lines. For the extended binary profile format, we introduce a metadata section to store the checksum map from function names to their CFG checksums.
Differential Revision: https://reviews.llvm.org/D92347
Similar to D77853. Change ADRP to print the target address in hex, instead of the raw immediate.
The behavior is similar to GNU objdump but we also include `0x`.
Note: GNU objdump is not consistent whether or not to emit `0x` for different architectures. We try emitting 0x consistently for all targets.
```
GNU objdump: adrp x16, 10000000
Old llvm-objdump: adrp x16, #0
New llvm-objdump: adrp x16, 0x10000000
```
`adrp Xd, 0x...` assembles to a relocation referencing `*ABS*+0x10000` which is not intended. We need to use a linker or use yaml2obj.
The main test is `test/tools/llvm-objdump/ELF/AArch64/pcrel-address.yaml`
Differential Revision: https://reviews.llvm.org/D93241
When a field is optional we can use the `=<none>` syntax in macros.
This patch makes `Value`/`Size` fields of `Symbol` optional
and adds test cases for them.
Differential revision: https://reviews.llvm.org/D93010
This is https://bugs.llvm.org/show_bug.cgi?id=45698.
Specification says that
"Loadable segment entries in the program header table appear
in ascending order, sorted on the p_vaddr member."
Our `toMappedAddr()` relies on this condition. This patch
adds a warning when the sorting order of loadable segments is wrong.
In this case we force segments sorting and that allows
`toMappedAddr()` to work as expected.
Differential revision: https://reviews.llvm.org/D92641
Two RUN lines produce outputs that, each, have some common parts and
some different parts. The common parts are checked under label A. The
differing parts are associated to a function and checked under labels B
and C, respectivelly.
When build_function_body_dictionary is called for the first RUN line, it
will attribute the function body to labels A and C. When the second RUN
is passed to build_function_body_dictionary, it sees that the function
body under A is different from what it has. If in this second RUN line,
A were at the end of the prefixes list, A's body is still kept
associated with the first run's function.
When we output the function body (i.e. add_checks), we stop after
emitting for the first prefix matching that function. So we end up with
the wrong function body (first RUN's A-association).
There is no reason to special-case the last label in the prefixes list,
and the fix is to always clear a label association if we find a RUN line
where the body is different.
Differential Revision: https://reviews.llvm.org/D93078
This is related to https://bugs.llvm.org/show_bug.cgi?id=40868.
Currently we don't print `OS Specific`/``Processor Specific`/`<unknown>`
prefixes when dumping the ELF file type. This is not consistent
with GNU readelf. The patch fixes it.
Also, this patch removes the `types.test`, because we already have
`file-types.test`, which tests more cases and this patch revealed that
we have such a duplicate.
Differential revision: https://reviews.llvm.org/D93096
On macOS/arm, signature verification has kill semantics by default.
Signature verification is cached with a file's inode (actually, vnode),
and if a new executable is copied over an existing file (which reuses
the inode), the cache isn't invalidated. So when the new executable
is executed, the kernel still has the old content's signature cached
and the kills the executable because the old signatue doesn't match
the new contents (https://openradar.appspot.com/FB8914243).
As workaround, rm the desitnation files first, to ensure they have
a fresh vnode (and hence no stale cached signature) after the copy.
Part of PR46647. See also e0e334a9c1 for a similar change.
When llvm-rc loads an external file, it looks for it relative to
a number of include directories and the current working directory.
If the path is considered absolute, llvm-rc tries to open the
filename as such, and doesn't try to open it relative to other
paths.
On Windows, a path name like "\dir\file" isn't considered absolute
as it lacks the drive name, but by appending it on top of the search
dirs, it's not found.
LLVM's sys::path::append just appends such a path (same with a properly
absolute posix path) after the paths it's supposed to be relative to.
This fix doesn't handle the case if the resource script and the
external file are on a different drive than the current working
directory; to fix that, we'd have to make LLVM's sys::path::append
handle appending fully absolute and partially absolute paths (ones
lacking a drive prefix but containing a root directory), or switch
to C++17's std::filesystem.
Differential Revision: https://reviews.llvm.org/D92558
-DENABLE_EXPERIMENTAL_NEW_PASS_MANAGER=on configured LLD and LLVMgold.so
will use the new pass manager by default. Add an option to
use the legacy pass manager. This will also be used by the Clang driver
when -fno-new-pass-manager (D92915) / -fno-experimental-new-pass-manager is set.
Reviewed By: aeubanks, tejohnson
Differential Revision: https://reviews.llvm.org/D92916
This changes the `printNotesHelper` to report warnings on its side when
there are errors when dumping notes.
With that we can provide more content when reporting warnings about broken notes.
Differential revision: https://reviews.llvm.org/D92636
It is allowed to have multiple `SHT_SYMTAB_SHNDX` sections, though
we currently don't implement it.
The current implementation assumes that there is a maximum of one SHT_SYMTAB_SHNDX
section and that it is always linked with .symtab section.
This patch drops this limitations.
Differential revision: https://reviews.llvm.org/D92644
MD5 is used.
Currently during sample profile loading, NameTable has to be loaded entirely
up front before any name string is retrieved. That is because NameTable is
stored using ULEB128 encoding and cannot be directly accessed like an array.
However, if MD5 is used to represent name in the NameTable, it has fixed
length. If MD5 names are stored in uint64_t type instead of ULEB128, NameTable
can be accessed like an array then in many cases only part of the NameTable
has to be read. This is helpful for reducing compile time especially when
small source file is compiled. We find that after this change, the elapsed
time to build a large application distributively is reduced by 5% and the
accumulative cpu time used for building is also reduced by 5%. The size of
the profile is slightly reduced with this change by ~0.2%, and that also
indicates encoding MD5 in ULEB128 doesn't save the storage space.
Differential Revision: https://reviews.llvm.org/D92621
Don't know why under Sanitizer build(asan/msan/ubsan), the `std::unordered_map<string, ...>`'s output order is reversed, make the regression test failed.
This change creates a workaround by using sorted container to make the output deterministic.
Reviewed By: hoy, wenlei
Differential Revision: https://reviews.llvm.org/D92816
Our internal build bot hit a failure in llvm/test/tools/llvm-symbolizer/pdb/missing_pdb.test
because the test was checking for an error message that is emitted when a pdb file is
missing. But when the drive is mapped to a removalable drive (such as a DVD drive) in
Windows, you get a different error message which causes the test to fail.
This fixes the test by changing the drive the missing pdb is expected to be on to C:\
instead of D:\ as that is the drive historically used to install Windows and thus
if present should be a hard drive.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D92787
This stack of changes introduces `llvm-profgen` utility which generates a profile data file from given perf script data files for sample-based PGO. It’s part of(not only) the CSSPGO work. Specifically to support context-sensitive with/without pseudo probe profile, it implements a series of functionalities including perf trace parsing, instruction symbolization, LBR stack/call frame stack unwinding, pseudo probe decoding, etc. Also high throughput is achieved by multiple levels of sample aggregation and compatible format with one stop is generated at the end. Please refer to: https://groups.google.com/g/llvm-dev/c/1p1rdYbL93s for the CSSPGO RFC.
This change supports context-sensitive profile data generation into llvm-profgen. With simultaneous sampling for LBR and call stack, we can identify leaf of LBR sample with calling context from stack sample . During the process of deriving fall through path from LBR entries, we unwind LBR by replaying all the calls and returns (including implicit calls/returns due to inlining) backwards on top of the sampled call stack. Then the state of call stack as we unwind through LBR always represents the calling context of current fall through path.
we have two types of virtual unwinding 1) LBR unwinding and 2) linear range unwinding.
Specifically, for each LBR entry which can be classified into call, return, regular branch, LBR unwinding will replay the operation by pushing, popping or switching leaf frame towards the call stack and since the initial call stack is most recently sampled, the replay should be in anti-execution order, i.e. for the regular case, pop the call stack when LBR is call, push frame on call stack when LBR is return. After each LBR processed, it also needs to align with the next LBR by going through instructions from previous LBR's target to current LBR's source, which we named linear unwinding. As instruction from linear range can come from different function by inlining, linear unwinding will do the range splitting and record counters through the range with same inline context.
With each fall through path from LBR unwinding, we aggregate each sample into counters by the calling context and eventually generate full context sensitive profile (without relying on inlining) to driver compiler's PGO/FDO.
A breakdown of noteworthy changes:
- Added `HybridSample` class as the abstraction perf sample including LBR stack and call stack
* Extended `PerfReader` to implement auto-detect whether input perf script output contains CS profile, then do the parsing. Multiple `HybridSample` are extracted
* Speed up by aggregating `HybridSample` into `AggregatedSamples`
* Added VirtualUnwinder that consumes aggregated `HybridSample` and implements unwinding of calls, returns, and linear path that contains implicit call/return from inlining. Ranges and branches counters are aggregated by the calling context. Here calling context is string type, each context is a pair of function name and callsite location info, the whole context is like `main:1 @ foo:2 @ bar`.
* Added PorfileGenerater that accumulates counters by ranges unfolding or branch target mapping, then generates context-sensitive function profile including function body, inferring callee's head sample, callsite target samples, eventually records into ProfileMap.
* Leveraged LLVM build-in(`SampleProfWriter`) writer to support different serialization format with no stop
- `getCanonicalFnName` for callee name and name from ELF section
- Added regression test for both unwinding and profile generation
Test Plan:
ninja & ninja check-llvm
Reviewed By: hoy, wenlei, wmi
Differential Revision: https://reviews.llvm.org/D89723
This rewrites the logic to get rid of "ELFSymbolRef" API where possible.
This allowed to handle possible errors better, improve warnings reported and add new ones.
Also 'reportWarning' was replaced with 'reportUniqueWarning'
Differential revision: https://reviews.llvm.org/D92545
Avoid calling getFlags on a non-existent symbol.
The way this is triggered is by calling strip -N on a binary, which sets
the MH_NLIST_OUTOFSYNC_WITH_DYLDINFO header flag. Then, in the
LC_FUNCTION_STARTS command, nm is trying to print the stripped symbols
and needs the proper checks.
TargetMachine::shouldAssumeDSOLocal currently implies dso_local for
Static. Split some tests so that these `external dso_local global`
will align with the Clang behavior.
They are currently implicit because TargetMachine::shouldAssumeDSOLocal implies
dso_local.
For external data, clang -fno-pic emits the dso_local specifier for ELF and
non-MinGW COFF. Adding explicit dso_local makes these tests in align with the
clang behavior and helps implementing an option to use GOT indirection for
external data access in -fno-pic mode (to avoid copy relocations).
This is similar to what we did earlier for fields of the Section class.
When a field is optional we can use the =<none> syntax in macros.
This was splitted from D92478.
Differential revision: https://reviews.llvm.org/D92565
This also teaches MachO writers/readers about the MachO cpu subtype,
beyond the minimal subtype reader support present at the moment.
This also defines a preprocessor macro to allow users to distinguish
__arm64__ from __arm64e__.
arm64e defaults to an "apple-a12" CPU, which supports v8.3a, allowing
pointer-authentication codegen.
It also currently defaults to ios14 and macos11.
Differential Revision: https://reviews.llvm.org/D87095
llvm-link should not rely on the '.a' file extension when deciding if input file
should be loaded as archive. Archives may have other extensions (f.e. .lib) or no
extensions at all. This patch changes llvm-link to use llvm::file_magic to check
if input file is an archive.
Reviewed By: RaviNarayanaswamy
Differential Revision: https://reviews.llvm.org/D92376
llvm-link should not rely on the '.a' file extension when deciding if input file
should be loaded as archive. Archives may have other extensions (f.e. .lib) or no
extensions at all. This patch changes llvm-link to use llvm::file_magic to check
if input file is an archive.
Reviewed By: RaviNarayanaswamy
Differential Revision: https://reviews.llvm.org/D92376
This implementation of `ELFDumper<ELFT>::printAttributes()` in llvm-readobj has issues:
1) It crashes when the content of the attribute section is empty.
2) It uses `unwrapOrError` and `reportWarning` calls, though
ideally we want to use `reportUniqueWarning`.
3) It contains a TODO about redundant format version check.
`lib/Support/ELFAttributeParser.cpp` uses a hardcoded constant instead of the named constant.
This patch fixes all these issues.
Differential revision: https://reviews.llvm.org/D92318
This:
1) Changes `reportWarning` to `reportUniqueWarning` (no-op here).
2) Adds more context to the message.
3) Merges `broken-dynsym-link.test` into `dyn-symbols.test`, adds more testing.
Differential revision: https://reviews.llvm.org/D92380
The static_assert in "libcxx/include/memory" was the main offender here,
but then I figured I might as well `git grep -i instantat` and fix all
the instances I found. One was in user-facing HTML documentation;
the rest were in comments or tests.
Currently when we dump sections, we dump them in the order,
which is specified in the sections header table.
With that the order in the output might not match the order in the file.
This patch starts sorting them by by file offsets when dumping.
When the order in the section header table doesn't match the order
in the file, we should emit the "SectionHeaderTable" key. This patch does it.
Differential revision: https://reviews.llvm.org/D91249
This merges `invalid-attr-section-size.test` and `invalid-attr-version.test`
into `invalid-attributes-sec.test`.
This allows to have a single place where other related test cases can be added.
Differential revision: https://reviews.llvm.org/D92316
This is the #1 of 2 changes that make remarks hotness threshold option
available in more tools. The changes also allow the threshold to sync with
hotness threshold from profile summary with special value 'auto'.
This change modifies the interface of lto::setupLLVMOptimizationRemarks() to
accept remarks hotness threshold. Update all the tools that use it with remarks
hotness threshold options:
* lld: '--opt-remarks-hotness-threshold='
* llvm-lto2: '--pass-remarks-hotness-threshold='
* llvm-lto: '--lto-pass-remarks-hotness-threshold='
* gold plugin: '-plugin-opt=opt-remarks-hotness-threshold='
Differential Revision: https://reviews.llvm.org/D85809
If prefaced with a %, expand text macros and macro functions in any statement.
Also, prevent expanding text macros in the message of an ECHO directive unless expanded explicitly by the statement expansion operator.
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D89740
The model was committed in 4b8ade837e
but not yet enabled to allow for a few fix ups. This adds a few
of these fixes, and also a LLVM MCA test to check most instructions.
While I do have plans to look into some more tuning, it's time to
enable this as it better than using the A53 schedule.
Differential Revision: https://reviews.llvm.org/D88017
This does the same as `--mcpu=help` but was only
documented in the user guide.
* Added a test for both options.
* Corrected the single dash in `-mcpu=help` text.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D92305
This patch starts emitting the `EShNum` key, when the `e_shnum = 0`
and the section header table exists.
`e_shnum` might be 0, when the the number of entries in the section header
table is larger than or equal to SHN_LORESERVE (0xff00).
In this case the real number of entries
in the section header table is held in the `sh_size`
member of the initial entry in section header table.
Currently, obj2yaml crashes when an object has `e_shoff != 0` and the `sh_size`
member of the initial entry in section header table is `0`.
This patch fixes it.
Differential revision: https://reviews.llvm.org/D92098
The following line asserts when `sh_addralign > MAX_UINT32 && (uint32_t)sh_addralign == 0`:
```
ExpectedOffset = alignTo(ExpectedOffset,
SecHdr.sh_addralign ? SecHdr.sh_addralign : 1);
```
it happens because `sh_addralign` is truncated to 32-bit value, but `alignTo`
doesn't accept `Align == 0`. We should change `1` to `1uLL`.
Differential revision: https://reviews.llvm.org/D92163
This is related to MIPS. Currently we might report an error and exit,
though there is no problem to report a warning and try to continue dumping
an object. The code uses `MipsGOTParser<ELFT> Parser`, which is isolated
in this method.
Differential revision: https://reviews.llvm.org/D92090
In text-item contexts, %expr expands to a string containing the results of evaluating `expr`.
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D89736
This starts using `reportUniqueWarnings` instead of `reportError`
in the code that is responsible for dumping notes.
Differential revision: https://reviews.llvm.org/D92021
`notes_begin()` is used for iterating over notes. This API in some cases might print
section type and index. At the same time during iterating, the `Elf_Note_Iterator`
might omit it as it doesn't have this info.
Because of above we might have the redundant duplication of information in warnings:
(See D92021).
```
warning: '[[FILE]]': unable to read notes from the SHT_NOTE section with index 1: SHT_NOTE section [index 1] has invalid offset (0x40) or size (0xffff0000)
```
This change stops reporting section index/type in Object/ELF.h/notes_begin().
(FTR, this was introduced by me for llvm-readobj in D64470).
Instead we can describe sections/program headers on the caller side.
Differential revision: https://reviews.llvm.org/D92081
Currently we never dump the `sh_offset` key.
Though it sometimes an important information.
To reduce the noise this patch implements the following logic:
1) The "Offset" key for the first section is always emitted.
2) If we can derive the offset for a next section naturally,
then the "Offset" key is omitted.
By "naturally" I mean that section[X] offset is expected to be:
```
offsetOf(section[X]) == alignTo(section[X - 1].sh_offset + section[X - 1].sh_size, section[X].sh_addralign)
```
So, when it has the expected value, we omit it from the output.
Differential revision: https://reviews.llvm.org/D91152