Summary:
As for x86_64, the default image base for AArch64 and i386 should be
aligned to a superpage appropriate for the architecture.
On AArch64, this is 2 MiB, on i386 it is 4 MiB.
Reviewers: emaste, grimar, javed.absar, espindola, ruiu, peter.smith, srhines, rprichard
Reviewed By: ruiu, peter.smith
Subscribers: jfb, markj, arichardson, krytarowski, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D50297
llvm-svn: 342746
Non-member functions are generally preferred over member functions
because it is clear that non-member functions don't depend on an
internal state of an object.
llvm-svn: 342695
The PPC64 elf V2 abi defines 2 entry points for a function. There are a few
places we need to calculate the offset from the global entry to the local entry
and how this is done is not straight forward. This patch adds a helper function
mostly for documentation purposes, explaining how the 2 entry points differ and
why we choose one over the other, as well as documenting how the offsets are
encoded into a functions st_other field.
Differential Revision: https://reviews.llvm.org/D52231
llvm-svn: 342603
The access sequence for global variables in the medium and large code models use
2 instructions to add an offset to the toc-pointer. If the offset fits whithin
16-bits then the instruction that sets the high 16 bits is redundant.
This patch adds the --toc-optimize option, (on by default) and enables rewriting
of 2 instruction global variable accesses into 1 when the offset from the
TOC-pointer to the variable (or .got entry) fits in 16 signed bits. eg
addis %r3, %r2, 0 --> nop
addi %r3, %r3, -0x8000 --> addi %r3, %r2, -0x8000
This rewriting can be disabled with the --no-toc-optimize flag
Differential Revision: https://reviews.llvm.org/D49237
llvm-svn: 342602
Summary:
For --pack-dyn-relocs=android, finalizeSections calls
LinkerScript::assignAddresses and
AndroidPackedRelocationSection::updateAllocSize in a loop,
where assignAddresses lays out the ELF image, then updateAllocSize
determines the size of the Android packed relocation table by encoding it.
Encoding the table requires knowing the values of relocation addends.
To get the addend of a TLS relocation, updateAllocSize can call getSymVA
on a TLS symbol before setPhdrs has initialized Out::TlsPhdr, producing an
error:
<file> has an STT_TLS symbol but doesn't have an SHF_TLS section
Fix the problem by initializing Out::TlsPhdr immediately after the program
headers are created. The segment's p_vaddr field isn't initialized until
setPhdrs, so use FirstSec->Addr, which is what setPhdrs would use.
FirstSec will typically refer to the .tdata or .tbss output section, whose
(tentative) address was computed by assignAddresses.
Android currently avoids this problem because it uses emutls and doesn't
support ELF TLS. This problem doesn't apply to --pack-dyn-relocs=relr
because SHR_RELR only handles relative relocations without explicit addends
or info.
Fixes https://bugs.llvm.org/show_bug.cgi?id=37841.
Reviewers: ruiu, pcc, chh, javed.absar, espindola
Subscribers: emaste, arichardson, llvm-commits, srhines
Differential Revision: https://reviews.llvm.org/D51671
llvm-svn: 342432
A General-dynamic tls access can be written using a R_PPC64_TLSGD16 relocation
if the target got entry is within 16 bits of the TOC-base. This patch adds
support for R_PPC64_TLSGD16 by relaxing it the same as a R_PPC64_GOT_TLSGD16_LO.
Differential Revision: https://reviews.llvm.org/D52055
llvm-svn: 342411
There are a growing number of places when we either want to read or write an
instruction when handling a half16 relocation type. On big-endian the buffer
pointer is pointing into the middle of the word we want and on little-endian it
is pointing to the start of the word. These 2 helpers are to simplify reading
and writing in these contexts.
Differential Revision: https://reviews.llvm.org/D52115
llvm-svn: 342410
tolower() has some overhead because current locale is considered (though in lld the default "C" locale is used which does not matter too much). llvm::toLower is more efficient as it compiles to a compare and a conditional jump, as opposed to a libc call if tolower is used.
Disregarding locale also matches gdb's behavior (gdb/minsyms.h):
#define SYMBOL_HASH_NEXT(hash, c) \
((hash) * 67 + TOLOWER ((unsigned char) (c)) - 113)
where TOLOWER (include/safe-ctype.h) is a macro that uses a lookup table under the hood which is similar to llvm::toLower.
Reviewers: ruiu, espindola
Subscribers: emaste, arichardson, llvm-commits
Differential Revision: https://reviews.llvm.org/D52128
llvm-svn: 342342
These files used to contain classes and functions for .gdb_index,
but they are moved to SyntheticSections.{cpp,h}, so the name is now
irrelevant.
llvm-svn: 342299
Once we create .gdb_index contents, .zdebug_gnu_pub{names,types}
are useless, so there's no need to keep their uncompressed data
in memory.
I observed that for a test case in which lld creates a 3GB .gdb_index
section, the maximum resident set size reduced from 43GB to 29GB after
this patch.
Differential Revision: https://reviews.llvm.org/D52126
llvm-svn: 342297
-z interpose sets the DF_1_INTERPOSE flag, marking the object as an
interposer.
Via FreeBSD PR 230604, linking Valgrind with lld failed.
Differential Revision: https://reviews.llvm.org/D52094
llvm-svn: 342239
If --just-syms is used the mapping symbols from the ELF file will be
absolute symbols with no section. The code to process mapping symbols in
--fix-cortex-a53-843419 assumes that these symbols have a defining section
so a crash will result when --just-syms is used. The simple fix is to not
process the symbol when it doesn't have a section.
Fixes PR37971
Differential Revision: https://reviews.llvm.org/D52038
llvm-svn: 342146
Summary: This protects lld from a null pointer dereference when a faulty input file has such invalid sh_link fields.
Reviewers: ruiu, espindola
Reviewed By: ruiu
Subscribers: emaste, arichardson, llvm-commits
Differential Revision: https://reviews.llvm.org/D51743
llvm-svn: 341611
section will not have an input file. Don't crash under those circumstances.
Neither clang nor llvm-mc generates R_X86_64_PC32 relocations due to
https://reviews.llvm.org/D43383, which makes it hard to write a test case.
However, gcc does generate such relocations. I want to get a fix in now,
but will figure out a way to actually exercise this code path as soon
as I can.
llvm-svn: 341408
This patch moves the checking for too large offsets into merge sections
earlier.
Without this change the large offset generated in the added test-case
will cause an assert (as it happens to be a value reserved as a
"tombstone" in the DenseMap implementation) when OffsetMap is queried in
getSectionPiece().
To simplify the code and avoid future mistakes I have refactored so that
there is only one function that looks up offsets in the OffsetMap.
Differential Revision: https://reviews.llvm.org/D51180
llvm-svn: 341206
These symbols are declared early with the same value, so they otherwise
appear identical to ICF.
Differential Revision: https://reviews.llvm.org/D51376
llvm-svn: 340998
With this patch, lld creates a .note.GNU_stack and adds that to an
output file if it is creating a re-linkable object file (i.e. if -r
is given). If we don't do this, and if you use GNU linkers as a final
linker, they create an executable whose stack area is executable,
which is considered pretty bad these days.
Differential Revision: https://reviews.llvm.org/D51400
llvm-svn: 340902
Relanding r340564, original commit message:
Fixes the handling of *_DS relocations used on DQ-form instructions where we
were overwriting some of the extended opcode bits. Also adds an alignment check
so that the user will receive a diagnostic error if the value we are writing
is not properly aligned.
Differential Revision: https://reviews.llvm.org/D51124
llvm-svn: 340832
Looking at the current implementation and algorithm description,
it does not seem we need to keep vector with all edges for
each cluster and can just remember the best one. This is NFC change.
Differential revision: https://reviews.llvm.org/D50609
llvm-svn: 340806
This reverts commit 5125b44dbb5d06b715213e4bec75c7346bfcc7d3.
ppc64-dq.s and ppc64-error-missaligned-dq.s fail on several of the build-bots.
Reverting to investigate.
llvm-svn: 340568
Fixes the handling of *_DS relocations used on DQ-form instructions where we
were overwriting some of the extended opcode bits. Also adds an alignment check
so that the user will receive a diagnostic error if the value we are writing
is not properly aligned.
Differential Revision: https://reviews.llvm.org/D51124
llvm-svn: 340564
This is a minor follow-up to https://reviews.llvm.org/D49189. On Windows, lld
used to print "lld-link.exe: error: ...". Now it just prints "lld-link: error:
...". This matches what link.exe does (it prints "LINK : ...") and makes lld's
output less dependent on the host system.
https://reviews.llvm.org/D51133
llvm-svn: 340487
We have an issue with -wrap that the option doesn't work well when
renamed symbols get PLT entries. I'll explain what is the issue and
how this patch solves it.
For one -wrap option, we have three symbols: foo, wrap_foo and real_foo.
Currently, we use memcpy to overwrite wrapped symbols so that they get
the same contents. This works in most cases but doesn't when the relocation
processor sets some flags in the symbol. memcpy'ed symbols are just
aliases, so they always have to have the same contents, but the
relocation processor breaks that assumption.
r336609 is an attempt to fix the issue by memcpy'ing again after
processing relocations, so that symbols that are out of sync get the
same contents again. That works in most cases as well, but it breaks
ASan build in a mysterious way.
We could probably fix the issue by choosing symbol attributes that need
to be copied after they are updated. But it feels too complicated to me.
So, in this patch, I fixed it once and for all. With this patch, we no
longer memcpy symbols. All references to renamed symbols point to new
symbols after wrapSymbols() is done.
Differential Revision: https://reviews.llvm.org/D50569
llvm-svn: 340387
Summary:
For -thinlto-object-suffix-replace=old\;new, in
tools/gold/gold-plugin.cpp, the thinlto object filename is Path minus
optional old suffix.
static std::string getThinLTOObjectFileName(StringRef Path, StringRef OldSuffix,
StringRef NewSuffix) {
if (OldSuffix.empty() && NewSuffix.empty())
return Path;
StringRef NewPath = Path;
NewPath.consume_back(OldSuffix);
std::string NewNewPath = NewPath;
NewNewPath += NewSuffix;
return NewNewPath;
}
Currently lld will error that the path does not end with old suffix.
This patch makes lld accept such paths but only add new suffix if Path
ends with old suffix. This fixes a link error where bitcode members in
an archive are regular LTO objects without old suffix.
Acording to tejohnson, this will "enable supporting mix and match of
minimized ThinLTO bitcode files with normal ThinLTO bitcode files in a
single link (where we want to apply the suffix replacement to the
minimized files, and just ignore it for the normal ThinLTO files)."
Reviewers: ruiu, pcc, tejohnson, espindola
Reviewed By: tejohnson
Subscribers: emaste, inglorion, arichardson, eraman, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D51055
llvm-svn: 340364
This patch adds the target call back relaxTlsIeToLe to support TLS relaxation
from initial exec to local exec model.
Differential Revision: https://reviews.llvm.org/D48091
llvm-svn: 340281
Our code in LazyObjFile::parse() has an ELFT switch and
adds a lazy object by its ELFT kind.
Though it might be possible to add a file using a different
architecture and make LLD to silently accept it (if the file
is empty or contains only week symbols). That itself, not a
huge issue perhaps (because the error would be reported later
if the file is fetched), but still does not look clean and correct.
It is possible to report an error earlier and clean up the
code. That is what the patch does.
Ideally, we might want to reuse isCompatible from SymbolTable.cpp,
but it is static and accepts a file as an argument, what is not
convenient. Since such a situation should be rare, I think it
should be OK to go with the way chosen in this patch.
Differential revision: https://reviews.llvm.org/D50899
llvm-svn: 340257
This fixes the following warning when compiling with gcc version 8.0.1 20180319 (experimental) (GCC):
/home/umb/LLVM/llvm/tools/lld/ELF/SyntheticSections.cpp:1951:46: warning: enumeral and non-enumeral type in conditional expression [-Wextra]
return OS->SectionIndex >= SHN_LORESERVE ? SHN_XINDEX : OS->SectionIndex;
llvm-svn: 340164
Older Arm architectures do not support the MOVT and MOVW instructions so we
must use an alternative sequence of instructions to transfer control to the
destination.
Assuming at least Armv5 this patch adds support for Thunks that load or add
to the program counter. Note that there are no Armv5 Thumb Thunks as there
is no Thumb branch instruction in Armv5 that supports Thunks. These thunks
will not work for Armv4t (arm7tdmi) as this architecture cannot change state
from using the LDR or ADD instruction.
Differential Revision: https://reviews.llvm.org/D50077
llvm-svn: 340160
The Thumb BL and BLX instructions on older Arm Architectures such as v5 and
v6 have a constrained encoding J1 and J2 must equal 1, later Architectures
relaxed this restriction allowing J1 and J2 to be used to calculate a larger
immediate.
This patch adds support for the old encoding, it is used when the build
attributes for the input objects only contain older architectures.
Differential Revision: https://reviews.llvm.org/D50076
llvm-svn: 340159