Setting the "Debug Info Version" module flag makes it possible to pipe
synthetic debug info into llc, which is useful for testing backends.
llvm-svn: 333237
Summary:
In formLCSSAForInstructions we speculatively add new PHI
nodes, that sometimes ends up without having any uses. It
has been discovered that sometimes an added PHI node can
appear as being unused in one iteration of the Worklist,
although it can end up being used by a PHI node added in
a later iteration. We now check, a second time, that the
PHI node still is unused before we remove it. This avoids
an assert about "Trying to remove a phi with uses." for the
added test case.
Reviewers: davide, mzolotukhin, mattd, dberlin
Reviewed By: mzolotukhin, dberlin
Subscribers: dberlin, mzolotukhin, davide, bjope, uabelho, llvm-commits
Differential Revision: https://reviews.llvm.org/D46422
llvm-svn: 331741
Summary:
This patch is an enhancement to propagate dbg.value information when Phis are created on behalf of LCSSA.
I noticed a case where a value carried across a loop was reported as <optimized out>.
Specifically this case:
```
int bar(int x, int y) {
return x + y;
}
int foo(int size) {
int val = 0;
for (int i = 0; i < size; ++i) {
val = bar(val, i); // Both val and i are correct
}
return val; // <optimized out>
}
```
In the above case, after all of the interesting computation completes our value
is reported as "optimized out." This change will add a dbg.value to correct this.
This patch also moves the dbg.value insertion routine from LoopRotation.cpp
into Local.cpp, so that we can share it in both places (LoopRotation and LCSSA).
Reviewers: mzolotukhin, aprantl, vsk, davide
Reviewed By: aprantl, vsk
Subscribers: dberlin, llvm-commits
Differential Revision: https://reviews.llvm.org/D42551
llvm-svn: 325926
This broke the Chromium build; see PR36238.
> This patch is an enhancement to propagate dbg.value information when
> Phis are created on behalf of LCSSA. I noticed a case where a value
> carried across a loop was reported as <optimized out>.
>
> Specifically this case:
>
> int bar(int x, int y) {
> return x + y;
> }
>
> int foo(int size) {
> int val = 0;
> for (int i = 0; i < size; ++i) {
> val = bar(val, i); // Both val and i are correct
> }
> return val; // <optimized out>
> }
>
> In the above case, after all of the interesting computation completes
> our value is reported as "optimized out." This change will add a
> dbg.value to correct this.
>
> This patch also moves the dbg.value insertion routine from
> LoopRotation.cpp into Local.cpp, so that we can share it in both places
> (LoopRotation and LCSSA).
>
> Patch by Matt Davis!
>
> Differential Revision: https://reviews.llvm.org/D42551
llvm-svn: 324247
Inserting a dbg.value instruction at the start of a basic block with a
landingpad instruction triggers a verifier failure. We should be OK if
we insert the instruction a bit later.
Speculative fix for the bot failure described here:
https://reviews.llvm.org/D42551
llvm-svn: 323482
This patch is an enhancement to propagate dbg.value information when
Phis are created on behalf of LCSSA. I noticed a case where a value
carried across a loop was reported as <optimized out>.
Specifically this case:
int bar(int x, int y) {
return x + y;
}
int foo(int size) {
int val = 0;
for (int i = 0; i < size; ++i) {
val = bar(val, i); // Both val and i are correct
}
return val; // <optimized out>
}
In the above case, after all of the interesting computation completes
our value is reported as "optimized out." This change will add a
dbg.value to correct this.
This patch also moves the dbg.value insertion routine from
LoopRotation.cpp into Local.cpp, so that we can share it in both places
(LoopRotation and LCSSA).
Patch by Matt Davis!
Differential Revision: https://reviews.llvm.org/D42551
llvm-svn: 323472
Revert "[LoopSimplify] Update LCSSA after separating nested loops."
This reverts commit r275891.
Revert "[LCSSA] Post-process PHI-nodes created by SSAUpdate when constructing LCSSA form."
This reverts commit r275883.
llvm-svn: 276064
The personality routine currently lives in the LandingPadInst.
This isn't desirable because:
- All LandingPadInsts in the same function must have the same
personality routine. This means that each LandingPadInst beyond the
first has an operand which produces no additional information.
- There is ongoing work to introduce EH IR constructs other than
LandingPadInst. Moving the personality routine off of any one
particular Instruction and onto the parent function seems a lot better
than have N different places a personality function can sneak onto an
exceptional function.
Differential Revision: http://reviews.llvm.org/D10429
llvm-svn: 239940
Same as r235145 for the call instruction - the justification, tradeoffs,
etc are all the same. The conversion script worked the same without any
false negatives (after replacing 'call' with 'invoke').
llvm-svn: 235755
Similar to gep (r230786) and load (r230794) changes.
Similar migration script can be used to update test cases, which
successfully migrated all of LLVM and Polly, but about 4 test cases
needed manually changes in Clang.
(this script will read the contents of stdin and massage it into stdout
- wrap it in the 'apply.sh' script shown in previous commits + xargs to
apply it over a large set of test cases)
import fileinput
import sys
import re
rep = re.compile(r"(getelementptr(?:\s+inbounds)?\s*\()((<\d*\s+x\s+)?([^@]*?)(|\s*addrspace\(\d+\))\s*\*(?(3)>)\s*)(?=$|%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|zeroinitializer|<|\[\[[a-zA-Z]|\{\{)", re.MULTILINE | re.DOTALL)
def conv(match):
line = match.group(1)
line += match.group(4)
line += ", "
line += match.group(2)
return line
line = sys.stdin.read()
off = 0
for match in re.finditer(rep, line):
sys.stdout.write(line[off:match.start()])
sys.stdout.write(conv(match))
off = match.end()
sys.stdout.write(line[off:])
llvm-svn: 232184
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
llvm-svn: 230786
Take two disjoint Loops L1 and L2.
LoopSimplify fails to simplify some loops (e.g. when indirect branches
are involved). In such situations, it can happen that an exit for L1 is
the header of L2. Thus, when we create PHIs in one of such exits we are
also inserting PHIs in L2 header.
This could break LCSSA form for L2 because these inserted PHIs can also
have uses in L2 exits, which are never handled in the current
implementation. Provide a fix for this corner case and test that we
don't assert/crash on that.
Differential Revision: http://reviews.llvm.org/D6624
rdar://problem/19166231
llvm-svn: 224740
- Instead of setting the suffixes in a bunch of places, just set one master
list in the top-level config. We now only modify the suffix list in a few
suites that have one particular unique suffix (.ml, .mc, .yaml, .td, .py).
- Aside from removing the need for a bunch of lit.local.cfg files, this enables
4 tests that were inadvertently being skipped (one in
Transforms/BranchFolding, a .s file each in DebugInfo/AArch64 and
CodeGen/PowerPC, and one in CodeGen/SI which is now failing and has been
XFAILED).
- This commit also fixes a bunch of config files to use config.root instead of
older copy-pasted code.
llvm-svn: 188513
This was done through the aid of a terrible Perl creation. I will not
paste any of the horrors here. Suffice to say, it require multiple
staged rounds of replacements, state carried between, and a few
nested-construct-parsing hacks that I'm not proud of. It happens, by
luck, to be able to deal with all the TCL-quoting patterns in evidence
in the LLVM test suite.
If anyone is maintaining large out-of-tree test trees, feel free to poke
me and I'll send you the steps I used to convert things, as well as
answer any painful questions etc. IRC works best for this type of thing
I find.
Once converted, switch the LLVM lit config to use ShTests the same as
Clang. In addition to being able to delete large amounts of Python code
from 'lit', this will also simplify the entire test suite and some of
lit's architecture.
Finally, the test suite runs 33% faster on Linux now. ;]
For my 16-hardware-thread (2x 4-core xeon e5520): 36s -> 24s
llvm-svn: 159525
The primary advantage is that loop optimizations will be applied in a
stable order. This helps debugging and unit test creation. It is also
a better overall implementation without pathologically bad performance
on deep functions.
On large functions (llvm-stress --size=200000 | opt -loops)
Before: 0.1263s
After: 0.0225s
On deep functions (after tweaking llvm-stress, thanks Nadav):
Before: 0.2281s
After: 0.0227s
See r158790 for more comments.
The loop tree is now consistently generated in forward order, but loop
passes are applied in reverse order over the program. If we have a
loop optimization that prefers forward order, that can easily be
achieved by adding a different type of LoopPassManager.
llvm-svn: 159183
the loop. This is needed because with indirectbr it may not be possible
for LoopSimplify to guarantee that all loop exit predecessors are
inside the loop. This fixes PR5437.
LCCSA no longer actually requires LoopSimplify form, but for now it
must still have the dependency because the PassManager doesn't know
how to schedule LoopSimplify otherwise.
llvm-svn: 86569
the PassManager code into a regular verifyAnalysis method.
Also, reorganize loop verification. Make the LoopPass infrastructure
call verifyLoop as needed instead of having LoopInfo::verifyAnalysis
check every loop in the function after each looop pass. Add a new
command-line argument, -verify-loop-info, to enable the expensive
full checking.
llvm-svn: 82952
input filename so that opt doesn't print the input filename in the
output so that grep lines in the tests don't unintentionally match
strings in the input filename.
llvm-svn: 81537
integer and floating-point opcodes, introducing
FAdd, FSub, and FMul.
For now, the AsmParser, BitcodeReader, and IRBuilder all preserve
backwards compatability, and the Core LLVM APIs preserve backwards
compatibility for IR producers. Most front-ends won't need to change
immediately.
This implements the first step of the plan outlined here:
http://nondot.org/sabre/LLVMNotes/IntegerOverflow.txt
llvm-svn: 72897
Remove && from the end of the lines to prevent tests from throwing run
lines into the background. Also, clean up places where the same command
is run multiple times by using a temporary file.
llvm-svn: 36142
global variables that needed to be passed in. This makes it possible to
add new global variables with only a couple changes (Makefile and llvm-dg.exp)
instead of touching every single dg.exp file.
llvm-svn: 35918
Remove "target endian/pointersize" or add "target datalayout" to make
the test parse properly or set the datalayout because defaults changes.
For PR645:
Make global names use the @ prefix.
For llvm-upgrade changes:
Fix test cases or completely remove use of llvm-upgrade for test cases
that cannot survive the new renaming or upgrade capabilities.
llvm-svn: 33533