Don't combine buildvector(binop(),binop(),binop(),binop()) -> binop(buildvector(), buildvector()) if its a splat - keep the binop scalar and just splat the result to avoid large vector constants.
llvm-svn: 321607
As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.
The MIR printer prints the IR name of a MBB only for block definitions.
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix
Differential Revision: https://reviews.llvm.org/D40422
llvm-svn: 319665
Similar to what we do for vXi8 ASHR(X, 7), use SSE42's PCMPGTQ to splat the sign instead of using the PSRAD+PSHUFD.
Avoiding bitcasts this improves combines that utilize computeNumSignBits, permits memory folding and reduces pipe pressure. Although it does require a second register, given that this is a (cheap) zero register the impact is minimal.
Differential Revision: https://reviews.llvm.org/D32973
llvm-svn: 302525
We know that pcmp produces all-ones/all-zeros bitmasks, so we can use that behavior to avoid unnecessary constant loading.
One could argue that load+and is actually a better solution for some CPUs (Intel big cores) because shifts don't have the
same throughput potential as load+and on those cores, but that should be handled as a CPU-specific later transformation if
it ever comes up. Removing the load is the more general x86 optimization. Note that the uneven usage of vpbroadcast in the
test cases is filed as PR28505:
https://llvm.org/bugs/show_bug.cgi?id=28505
Differential Revision: http://reviews.llvm.org/D22225
llvm-svn: 275276
If all a BUILD_VECTOR's source elements are the same bit (AND/XOR/OR) operation type and each has one constant operand, lower to a pair of BUILD_VECTOR and just apply the bit operation to the vectors.
The constant operands will form a constant vector meaning that we still only have a single BUILD_VECTOR to lower and we will have replaced all the scalarized operations with a single SSE equivalent.
Its not in our interest to start make a general purpose vectorizer from this, but I'm seeing enough of these scalar bit operations from the later legalization/scalarization stages to support them at least.
Differential Revision: http://reviews.llvm.org/D18492
llvm-svn: 264666
This is one of the cases shown in:
https://llvm.org/bugs/show_bug.cgi?id=26701
Shift and negate is what InstCombine appears to prefer, so I've started with that pattern.
Note that the 'pcmpeq' instructions are always generating the negative one for the actual
'pcmpgt' comparison in each case (side note: why isn't there an alias mnemonic for that?).
Differential Revision: http://reviews.llvm.org/D17630
llvm-svn: 262036