Ensure we test on 32-bit and 64-bit targets, and strip -mcpu usage.
Part of ongoing work to ensure we test all intrinsic style tests on 32 and 64 bit targets where possible.
llvm-svn: 333843
It was noticed on D47377 that these tests were being unnecessarily affected by scheduler changes.
This adds vzeroupper at the end of some tests as we lose the 'FeatureFastPartialYMMorZMMWrite' feature from KNL, since Skylake+ don't support this its probably better.
llvm-svn: 333549
We have unmasked intrinsics now and wrap them with a select. This is a net reduction of 36 intrinsics from before the unmasked intrinsics were added.
llvm-svn: 333388
This removes 6 intrinsics since we no longer need separate mask and maskz intrinsics.
Differential Revision: https://reviews.llvm.org/D47124
llvm-svn: 332890
This completes the work started in r329604 and r329605 when we changed clang to no longer use the intrinsics.
We lost some InstCombine SimplifyDemandedBit optimizations through this change as we aren't able to fold 'and', bitcast, shuffle very well.
llvm-svn: 329990
This better able to detect undef and zeros pieces in the concat. Or cases when only one subvector is non-zero. This allows us to avoid silly things like double inserts into progressively larger undefs.
This still builds 512 bit concats of 128 bits by building up through 256 bits first. But I don't know if that's best.
We probably want to merge this with the vXi1 concat code since they are very similar.
llvm-svn: 327454
We swapped the operands and used setle, but I don't see any reason to do that. I think this is a holdover from SSE where we swap and the invert to use pcmpgt. But with AVX512 we don't want an invert so we won't use pcmpgt. So there's no need to swap.
llvm-svn: 325527
Summary:
This patch changes the signature of the avx512 packed fp compare intrinsics to return a vXi1 vector and no longer take a mask as input. The casts to scalar type will now need to be explicit in the IR. The masking node will now be an explicit and in the IR.
This makes the intrinsic look much more similar to an fcmp instruction that we wish we could use for these but can't. We already use icmp instructions for integer compares.
Previously the lowering step of isel would turn the intrinsic into an X86 specific ISD node and a emit the masking nodes as well as some bitcasts. This means DAG combines can't see the vXi1 type until somewhat late, making it more difficult to combine out gpr<->mask transition sequences. By exposing the vXi1 type explicitly in the IR and initial SelectionDAG we give earlier DAG combines and even InstCombine the chance to see it and optimize it.
This should make any issues with gpr<->mask sequences the same between integer and fp. Meaning we only have to fix them once.
Reviewers: spatel, delena, RKSimon, zvi
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D43137
llvm-svn: 324827
Most vxi1 constant build vectors have to be implemented in the scalar domain anyway so we'll probably end up with a cast there later. But by then its too late to do the combine to get rid of it.
llvm-svn: 324662
This reduces the number of transitions between k-registers and GPRs, reducing the number of instructions.
There's still some room for improvement to remove more transitions, but this is a good start.
llvm-svn: 324184
Clang already stopped using these a couple months ago.
The test cases aren't great as there is nothing forcing the operations to stay in k-registers so some of them moved back to scalar ops due to the bitcasts being moved around.
llvm-svn: 324177
Discussed here:
http://lists.llvm.org/pipermail/llvm-dev/2018-January/120320.html
In preparation for adding support for named vregs we are changing the sigil for
physical registers in MIR to '$' from '%'. This will prevent name clashes of
named physical register with named vregs.
llvm-svn: 323922
Summary: This patch changes the kunpck intrinsic autoupgrade to use vXi1 shufflevector operations to perform vector extracts and concats. This more closely matches the definition of the kunpck instructions. Currently we rely on a DAG combine to turn the scalar shift/and/or code into a concat vectors operation. By doing it in the IR we get this for free.
Reviewers: spatel, RKSimon, zvi, jina.nahias
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42018
llvm-svn: 322462
Summary:
There are few oddities that occur due to v1i1, v8i1, v16i1 being legal without v2i1 and v4i1 being legal when we don't have VLX. Particularly during legalization of v2i32/v4i32/v2i64/v4i64 masked gather/scatter/load/store. We end up promoting the mask argument to these during type legalization and then have to widen the promoted type to v8iX/v16iX and truncate it to get the element size back down to v8i1/v16i1 to use a 512-bit operation. Since need to fill the upper bits of the mask we have to fill with 0s at the promoted type.
It would be better if we could just have the v2i1/v4i1 types as legal so they don't undergo any promotion. Then we can just widen with 0s directly in a k register. There are no real v4i1/v2i1 instructions anyway. Everything is done on a larger register anyway.
This also fixes an issue that we couldn't implement a masked vextractf32x4 from zmm to xmm properly.
We now have to support widening more compares to 512-bit to get a mask result out so new tablegen patterns got added.
I had to hack the legalizer for widening the operand of a setcc a bit so it didn't try create a setcc returning v4i32, extract from it, then try to promote it using a sign extend to v2i1. Now we create the setcc with v4i1 if the original setcc's result type is v2i1. Then extract that and don't sign extend it at all.
There's definitely room for improvement with some follow up patches.
Reviewers: RKSimon, zvi, guyblank
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41560
llvm-svn: 321967
This doesn't match the semantics of the extract_vector_elt operation. Nothing downstream knows the bits were zeroed so they still get masked or sign extended after the extrat anyway.
llvm-svn: 320723
This patch, together with a matching clang patch (https://reviews.llvm.org/D39719), implements the lowering of X86 kunpack intrinsics to IR.
Differential Revision: https://reviews.llvm.org/D39720
Change-Id: I4088d9428478f9457f6afddc90bd3d66b3daf0a1
llvm-svn: 319778
As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.
The MIR printer prints the IR name of a MBB only for block definitions.
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix
Differential Revision: https://reviews.llvm.org/D40422
llvm-svn: 319665
As part of the unification of the debug format and the MIR format,
always print registers as lowercase.
* Only debug printing is affected. It now follows MIR.
Differential Revision: https://reviews.llvm.org/D40417
llvm-svn: 319187
Remove builtins from llvm and add AutoUpgrade support.
Also add fast-isel tests for the TEST and TESTN instructions.
Differential Revision: https://reviews.llvm.org/D38736
llvm-svn: 318036
This patch, together with a matching clang patch (https://reviews.llvm.org/D38672), implements the lowering of X86 shuffle i/f intrinsics to IR.
Differential Revision: https://reviews.llvm.org/D38671
Change-Id: I1e7d359a74743e995ec356237a85214ce55d3661
llvm-svn: 318026
Selecting 32-bit element logical ops without a select or broadcast requires matching a bitconvert on the inputs to the and. But that's a weird thing to rely on. It's entirely possible that one of the inputs doesn't have a bitcast and one does.
Since there's no functional difference, just remove the extra patterns and save some isel table size.
Differential Revision: https://reviews.llvm.org/D36854
llvm-svn: 312138
This patch completely replaces the instruction scheduling information for the Haswell architecture target by modifying the file X86SchedHaswell.td located under the X86 Target.
We used the scheduling information retrieved from the Haswell architects in order to replace and modify the existing scheduling.
The patch continues the scheduling replacement effort started with the SNB target in r307529 and r310792.
Information includes latency, number of micro-Ops and used ports by each HSW instruction.
Please expect some performance fluctuations due to code alignment effects.
Reviewers: RKSimon, zvi, aymanmus, craig.topper, m_zuckerman, igorb, dim, chandlerc, aaboud
Differential Revision: https://reviews.llvm.org/D36663
llvm-svn: 311879
Summary:
This autoupgrades most of the broadcast intrinsics. They've been unused in clang for some time.
This leaves the 32x2 intrinsics because they are still used in clang.
Reviewers: RKSimon, zvi, igorb
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D36606
llvm-svn: 310725
•static latency
•number of uOps from which the instructions consists
•all ports used by the instruction
Reviewers:
RKSimon
zvi
aymanmus
m_zuckerman
Differential Revision: https://reviews.llvm.org/D33897
llvm-svn: 306414
Summary:
These intrinsics aren't used by clang and haven't been for a while.
There's some really terrible codegen in the 32-bit target for avx512bw due to i64 not being legal. But as I said these intrinsics aren't used by clang even before this patch so this codegen reflects our clang behavior today.
Reviewers: spatel, RKSimon, zvi, igorb
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34389
llvm-svn: 306047
Summary: LiveRangeShrink pass moves instruction right after the definition with the same BB if the instruction and its operands all have more than one use. This pass is inexpensive and guarantees optimal live-range within BB.
Reviewers: davidxl, wmi, hfinkel, MatzeB, andreadb
Reviewed By: MatzeB, andreadb
Subscribers: hiraditya, jyknight, sanjoy, skatkov, gberry, jholewinski, qcolombet, javed.absar, krytarowski, atrick, spatel, RKSimon, andreadb, MatzeB, mehdi_amini, mgorny, efriedma, davide, dberlin, llvm-commits
Differential Revision: https://reviews.llvm.org/D32563
llvm-svn: 304371
This patch defines the i1 type as illegal in the X86 backend for AVX512.
For DAG operations on <N x i1> types (build vector, extract vector element, ...) i8 is used, and should be truncated/extended.
This should produce better scalar code for i1 types since GPRs will be used instead of mask registers.
Differential Revision: https://reviews.llvm.org/D32273
llvm-svn: 303421
This also reverts follow-ups r303292 and r303298.
It broke some Chromium tests under MSan, and apparently also internal
tests at Google.
llvm-svn: 303369
Summary: LiveRangeShrink pass moves instruction right after the definition with the same BB if the instruction and its operands all have more than one use. This pass is inexpensive and guarantees optimal live-range within BB.
Reviewers: davidxl, wmi, hfinkel, MatzeB, andreadb
Reviewed By: MatzeB, andreadb
Subscribers: hiraditya, jyknight, sanjoy, skatkov, gberry, jholewinski, qcolombet, javed.absar, krytarowski, atrick, spatel, RKSimon, andreadb, MatzeB, mehdi_amini, mgorny, efriedma, davide, dberlin, llvm-commits
Differential Revision: https://reviews.llvm.org/D32563
llvm-svn: 302938
MOVNTDQA non-temporal aligned vector loads can be correctly represented using generic builtin loads, allowing us to remove the existing x86 intrinsics.
Clang companion patch: D31766.
Differential Revision: https://reviews.llvm.org/D31767
llvm-svn: 300325
We've had several bugs(PR32256, PR32241) recently that resulted from usages of AH/BH/CH/DH either before or after a copy to/from a mask register.
This ultimately occurs because we create COPY_TO_REGCLASS with VK1 and GR8. Then in CopyToFromAsymmetricReg in X86InstrInfo we find a 32-bit super register for the GR8 to emit the KMOV with. But as these tests are demonstrating, its possible for the GR8 register to be a high register and we end up doing an accidental extra or insert from bits 15:8.
I think the best way forward is to stop making copies directly between mask registers and GR8/GR16. Instead I think we should restrict to only copies between mask registers and GR32/GR64 and use EXTRACT_SUBREG/INSERT_SUBREG to handle the conversion from GR32 to GR16/8 or vice versa.
Unfortunately, this complicates fastisel a bit more now to create the subreg extracts where we used to create GR8 copies. We can probably make a helper function to bring down the repitition.
This does result in KMOVD being used for copies when BWI is available because we don't know the original mask register size. This caused a lot of deltas on tests because we have to split the checks for KMOVD vs KMOVW based on BWI.
Differential Revision: https://reviews.llvm.org/D30968
llvm-svn: 298928