This patch adds a new function pass ScopInfoWrapperPass so that the
polyhedral description of a region, the SCoP, can be constructed and
used in a function pass.
Patch by Utpal Bora <cs14mtech11017@iith.ac.in>
Differential Revision: http://reviews.llvm.org/D20962
llvm-svn: 273856
ISL 0.16 will change how sets are printed which breaks 117 unit tests
that text-compare printed sets. This patch re-formats most of these unit
tests using a script and small manual editing on top of that. When
actually updating ISL, most work is done by just re-running the script
to adapt to the changed output.
Some tests that compare IR and tests with single CHECK-lines that can be
easily updated manually are not included here.
The re-format script will also be committed afterwards. The per-test
formatter invocation command lines options will not be added in the near
future because it is ad hoc and would overwrite the manual edits.
Ideally it also shouldn't be required anymore because ISL's set printing
has become more stable in 0.16.
Differential Revision: http://reviews.llvm.org/D16095
llvm-svn: 257851
These flags are now always passed to all tests and need to be disabled if
not needed. Disabling these flags, rather than passing them to almost all
tests, significantly simplfies our RUN: lines.
llvm-svn: 249422
If the GEP instructions give us enough insights, model scalar accesses as
multi-dimensional (and generate the relevant run-time checks to ensure
correctness). This will allow us to simplify the dependence computation in
a subsequent commit.
llvm-svn: 247906
This patch replaces the last legacy part of the domain generation, namely the
ScalarEvolution part that was used to obtain loop bounds. We now iterate over
the loops in the region and propagate the back edge condition to the header
blocks. Afterwards we propagate the new information once through the whole
region. In this process we simply ignore unbounded parts of the domain and
thereby assume the absence of infinite loops.
+ This patch already identified a couple of broken unit tests we had for
years.
+ We allow more loops already and the step to multiple exit and multiple back
edges is minimal.
+ It allows to model the overflow checks properly as we actually visit
every block in the SCoP and know where which condition is evaluated.
- It is currently not compatible with modulo constraints in the
domain.
Differential Revision: http://reviews.llvm.org/D12499
llvm-svn: 247279
In order to compute domain conditions for conditionals we will now
traverse the region in the ScopInfo once and build the domains for
each block in the region. The SCoP statements can then use these
constraints when they build their domain.
The reason behind this change is twofold:
1) This removes a big chunk of preprocessing logic from the
TempScopInfo, namely the Conditionals we used to build there.
Additionally to moving this logic it is also simplified. Instead
of walking the dominance tree up for each basic block in the
region (as we did before), we now traverse the region only
once in order to collect the domain conditions.
2) This is the first step towards the isl based domain creation.
The second step will traverse the region similar to this step,
however it will propagate back edge conditions. Once both are in
place this conditional handling will allow multiple exit loops
additional logic.
Reviewers: grosser
Differential Revision: http://reviews.llvm.org/D12428
llvm-svn: 246398
I just learned that target triples prevent test cases to be run on other
architectures. Polly test cases are until now sufficiently target independent
to not require any target triples. Hence, we drop them.
llvm-svn: 235384
In Polly we used both the term 'scattering' and the term 'schedule' to describe
the execution order of a statement without actually distinguishing between them.
We now uniformly use the term 'schedule' for the execution order. This
corresponds to the terminology of isl.
History: CLooG introduced the term scattering as the generated code can be used
as a sequential execution order (schedule) or as a parallel dimension
enumerating different threads of execution (placement). In Polly and/or isl the
term placement was never used, but we uniformly refer to an execution order as a
schedule and only later introduce parallelism. When doing so we do not talk
about about specific placement dimensions.
llvm-svn: 235380
Scops that only read seem generally uninteresting and scops that only write are
most likely initializations where there is also little to optimize. To not
waste compile time we bail early.
Differential Revision: http://reviews.llvm.org/D7735
llvm-svn: 229820
Schedule dimensions that have the same constant value accross all statements do
not carry any information, but due to the increased dimensionality of the
schedule cost compile time. To not pay this cost, we remove constant dimensions
if possible.
llvm-svn: 225067
This change is particularly useful in the code generation as we need
to know which binary operator/identity element we need to combine/initialize
the privatization locations.
+ Print the reduction type for each memory access
+ Adjusted the test cases to comply with the new output format and
to test for the right reduction type
llvm-svn: 212126
We had a set of test cases that have been incomplete and XFAILED. This patch
completes a couple of the interesting ones and removes the ones which seem
redundant or not sufficiently reduced to be useful.
llvm-svn: 211670