This patch introduces a new cmake variable: CLANG_DEFAULT_RTLIB, thru
which we can specify a default value for -rtlib (libgcc or
compiler-rt) at build time, just like how we set the default C++
stdlib thru CLANG_DEFAULT_CXX_STDLIB.
With these two options, we can configure clang to build binaries on
Linux that have no runtime dependence on any gcc libs (libstdc++ or
libgcc_s).
Patch by Lei Zhang!
Differential Revision: https://reviews.llvm.org/D22663
llvm-svn: 276848
On OS X 10.11 System Integrity Protection prevents the DYLD environment variables from being set on system binaries. To work around this r276710 accepts DYLD_LIBRARY_PATH as a CMake variable and sets it directly on the archiver commands.
To make this work with bootstrapping we need to set DYLD_LIBRARY_PATH to the current stage's library directory and pass that into the next stage's configuration.
llvm-svn: 276711
In Bootstrap builds Clang logs some warnings. These are caused because Clang passes CLANG_STAGE and BOOTSTRAP_DEFAULT_PASSTHROUGH into the next stage's configuration.
BOOTSTRAP_DEFAULT_PASSTHROUGH shouldn't be passed, so it is renamed to _BOOTSTRAP_DEFAULT_PASSTHROUGH, to prevent passthrough.
CLANG_STAGE should be passed, so I've changed the code to log it if it is set outside the if(CLANG_ENABLE_BOOTSTRAP) block. This makes the variable always used, so the warning goes away.
llvm-svn: 276674
LLVM_BUILD_TOOLS is a boolean variable that controls whether or not generated
targets for llvm tools are built by the "all" target. CLANG_BUILD_TOOLS is an
analogous variable for clang targets.
This is useful functionality for selectively disabling the building of clang
targets by default to speed up builds.
In terms of implementation, I just followed the model of LLVM's implementation
of this functionality.
llvm-svn: 275006
This matches how LLVM has its cmake files organized and is cleaner than just
shoving this business logic into the main CMakeLists.txt.
llvm-svn: 274992
I added this option in r257827 to try and add compatibility with autoconf. At the time I misunderstood the problem.
Our CMake automatically generates the SVN revision information and generates a build action to update it so builds don't need to be re-configured on SCM update (which is a better solution than we had in autoconf).
The problem I was actually seeing was isolated cases where SVN revision information isn't available because the repository structures have been removed. This happens in some automated testing systems.
This patch allows SVN_REVISION to be overridden if the build configuration could not find the SCM repository structures, and removes the code from my original patch because it is unnecessary.
llvm-svn: 273714
Now that we're on CMake 3.4.3 all the ExternalProject features we use are supported everywhere, so we don't need the version checks anymore.
llvm-svn: 272324
CMake 2.8.12 introduced interface libraries and some related policies. This removes the conditional block because we're now past 2.8.12.
llvm-svn: 272312
This reverts r272275. This actually wasn't the right way to fix the problem. The correct solution is in r272279.
Applying the fix to LLVM as done in r272279, means this fix will get picked up by all projects building out of tree using LLVM's CMake modules. As opposed to the fix I had in r272275, which would require each project to change.
llvm-svn: 272280
The out-of-tree build needs to read LLVM_TOOLS_INSTALL_DIR out of TOOLS_BINARY_DIR because LLVM_TOOLS_INSTALL_DIR is used by AddLLVM.cmake
llvm-svn: 272275
We now have a cmake option to change the default: ENABLE_LINKER_BUILD_ID.
The reason is that build-id is fairly expensive, so we shouldn't impose
it in the regular edit/build cycle.
This is similar to gcc, that has an off by default --enable-linker-build-id
option.
llvm-svn: 271692
llvm-ar isn't really supported for Darwin, instead the host tools will load libLTO, so we can use the just-built libLTO.
This actually makes Darwin bootstrap builds a little faster because you don't need to build llvm-ar before starting the next stage.
llvm-svn: 267756
This is re-landing r260742. I've reworked the conditionals so that it only hits when targeting Apple platforms with ld64.
Original Summary:
With this change generating clang order files using dtrace uses the following workflow:
cmake <whatever options you want>
ninja generate-order-file
ninja clang
This patch works by setting a default path to the order file (which can be overridden by the user). If the order file doesn't exist during configuration CMake will create an empty one.
CMake then ties up the dependencies between the clang link job and the order file, and generate-order-file overwrites CLANG_ORDER_FILE with the new order file.
llvm-svn: 265864
This is the clang equivalent to llvm commit 264601. When using Visual Studio 2015, cmake now puts the native visualizers in llvm.sln, so the developer automatically sees custom visualizations.
Much thanks to ariccio who provided extensive help on this change. (manual installation still needed on VS2013).
llvm-svn: 264603
LLVM r263566 adds a generic PACKAGE_VENDOR configuration which can be used to specify the vendor for LLVM toolchain tools. This change defaults the CLANG_VENDOR to the PACKAGE_VENDOR so that you don't have to specify both when building a package.
llvm-svn: 263570
This is needed to build the gold plugin in multi-stage builds.
Patch by Mike Edwards
Differential Revision: http://reviews.llvm.org/D17655
llvm-svn: 262065
This appears to be passing '-Wl,-order_file' to Linux link commands,
which then causes the linker to silently, behind the scenes, write the
output to 'rder_file' instead of somewhere else. Will work with Chris to
figure out the proper support for this, but so far there are numerous
people who can't get Clang to update when they build because of this.
llvm-svn: 261054
Summary:
This commit re-lands r259862. The underlying cause of the build breakage was an incorrectly written capabilities test. In tools/Driver/CMakeLists.txt I was attempting to check if a linker flag worked, the test was passing it to the compiler, not the linker. CMake doesn't have a linker test, so we have a hand-rolled one.
Original Patch Review: http://reviews.llvm.org/D16896
Original Summary:
With this change generating clang order files using dtrace uses the following workflow:
cmake <whatever options you want>
ninja generate-order-file
ninja clang
This patch works by setting a default path to the order file (which can be overridden by the user). If the order file doesn't exist during configuration CMake will create an empty one.
CMake then ties up the dependencies between the clang link job and the order file, and generate-order-file overwrites CLANG_ORDER_FILE with the new order file.
Reviewers: bogner
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D16999
llvm-svn: 260742
With this option one can optionally override the architecture dependent
default library to use if no -stdlib= is provided on compiler invocation.
Differential Revision: http://reviews.llvm.org/D15920
llvm-svn: 260662
For multi-stage builds we need to pass any overridden source directory variables. Without passing these the subsequent stages won't find the project sources.
llvm-svn: 260341
This reverts commit r259862, and attempts to fix builder CMakeCaches.
Will try this again some other time...
Conflicts:
CMakeLists.txt
tools/driver/CMakeLists.txt
llvm-svn: 259872
This change will catch any bots that generated the order file that GNU ld doesn't like and delete it before trying to generate one that I think GNU ld will deal with.
llvm-svn: 259871
Summary:
With this change generating clang order files using dtrace uses the following workflow:
cmake <whatever options you want>
ninja generate-order-file
ninja clang
This patch works by setting a default path to the order file (which can be overridden by the user). If the order file doesn't exist during configuration CMake will create an empty one.
CMake then ties up the dependencies between the clang link job and the order file, and generate-order-file overwrites CLANG_ORDER_FILE with the new order file.
Reviewers: bogner
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D16896
llvm-svn: 259862
I can't apply export to tools without getting some strange CMake spew. The behavior here is a bit unexpected. CMake is complaining about static link dependencies not being in the same export set, which shouldn't matter.
In the short term it is easier to just remove the export set (which was just added in r258209) while I sort this out.
llvm-svn: 258214
This change brings forward the LLVM convention that "executables" are just runnable binaries, and "tools" are executables that are part of the project's install.
Having this abstraction will allow us to simplify some of the tool CMakeLists files, and it will standardize some of the install behaviors.
llvm-svn: 258209
Summary:
This patch adds support for the clang multi-stage bootstrapping to support PGO profdata generation, and can build a 2 or 3 stage compiler.
With this patch applied you can configure your build directory with the following invocation of CMake:
cmake -G <generator> -C <path_to_clang>/cmake/caches/PGO.cmake <source dir>
After configuration the following additional targets will be generated:
stage2-instrumented:
Builds a stage1 x86 compiler, runtime, and required tools (llvm-config, llvm-profdata) then uses that compiler to build an instrumented stage2 compiler.
stage2-instrumented-generate-profdata:
Depends on "stage2-instrumented" and will use the instrumented compiler to generate profdata based on the training files in <clang>/utils/perf-training
stage2:
Depends on "stage2-instrumented-generate-profdata" and will use the stage1 compiler with the stage2 profdata to build a PGO-optimized compiler.
stage2-check-llvm:
Depends on stage2 and runs check-llvm using the stage3 compiler.
stage2-check-clang:
Depends on stage2 and runs check-clang using the stage3 compiler.
stage2-check-all:
Depends on stage2 and runs check-all using the stage3 compiler.
stage2-test-suite:
Depends on stage2 and runs the test-suite using the stage3 compiler (requires in-tree test-suite).
Reviewers: bogner, silvas, chandlerc
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D15584
llvm-svn: 256873
Summary:
This patch adds support for the clang multi-stage bootstrapping to support PGO profdata generation, and can build a 2 or 3 stage compiler.
With this patch applied you can configure your build directory with the following invocation of CMake:
cmake -G <generator> -C <path_to_clang>/cmake/caches/PGO.cmake <source dir>
After configuration the following additional targets will be generated:
stage2-instrumented:
Builds a stage1 x86 compiler, runtime, and required tools (llvm-config, llvm-profdata) then uses that compiler to build an instrumented stage2 compiler.
stage2-instrumented-generate-profdata:
Depends on "stage2-instrumented" and will use the instrumented compiler to generate profdata based on the training files in <clang>/utils/perf-training
stage2:
Depends on "stage2-instrumented-generate-profdata" and will use the stage1 compiler with the stage2 profdata to build a PGO-optimized compiler.
stage2-check-llvm:
Depends on stage2 and runs check-llvm using the stage3 compiler.
stage2-check-clang:
Depends on stage2 and runs check-clang using the stage3 compiler.
stage2-check-all:
Depends on stage2 and runs check-all using the stage3 compiler.
stage2-test-suite:
Depends on stage2 and runs the test-suite using the stage3 compiler (requires in-tree test-suite).
Reviewers: bogner, silvas, chandlerc
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D15584
llvm-svn: 256069
When you start chaining bootstrap stages the CMake-generated targets get unwieldy. This change supports naming the bootstrap targets and creating wrapper targets in the top-level build file.
Without this patch the default target generated for a second stage build was "bootstrap" with it the target is "stage2".
Also with some CMake goop setting CLANG_BOOTSTRAP_TARGETS, you can expose third stage targets as "stage3" instead of "bootstrap-bootstrap"
llvm-svn: 255813
Summary:
This patch adds support for using LIT to drive generating PGO profile data for clang.
This first pass implementation should work on Linux and Unix based platforms. If you build clang using CMake with LLVM_BUILD_INSTRUMENTED=On the CMake build generates a generate-profdata target that will use the just-built clang to build any test files (see hello_world.cpp as an example). Each test compile will generate profraw files for each clang process. After all tests have run CMake will merge the profraw files using llvm-profdata.
Future opportunities for extension:
* Support for Build->Profile->Build bootstrapping
* Support for linker order file generation using a similar mechanism and the same training data
* Support for Windows
Reviewers: dexonsmith, friss, bogner, cmatthews, vsk, silvas
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D15462
llvm-svn: 255740
Patch turns on OpenMP support in clang by default after fixing OpenMP buildbots.
Differential Revision: http://reviews.llvm.org/D13803
llvm-svn: 255223
This adds support for three types of argument specifications for bootstrap builds:
(1) Arguments prefixed with BOOTSTRAP_* will be passed through with the leading BOOTSTRAP_ removed.
(2) CLANG_BOOTSTRAP_PASSTHROUGH can specify a list of variables to be passed through as they are set.
(3) BOOTSTRAP_DEFAULT_PASSTHROUGH is a list of some default passthrough variables that are always passed through. Those variables include the version string and should only specify variables that are always expected to be the same between the stage1 and stage2
llvm-svn: 253721