Summary:
MRI::eliminateFrameIndex can emit several instructions to do address
calculations; these can usually be stackified. Because instructions with
FI operands can have subsequent operands which may be expression trees,
find the top of the leftmost tree and insert the code before it, to keep
the LIFO property.
Also use stackified registers when writing back the SP value to memory
in the epilog; it's unnecessary because SP will not be used after the
epilog, and it results in better code.
Differential Revision: http://reviews.llvm.org/D18234
llvm-svn: 263725
This implements a very simple conservative transformation that doesn't
require more than linear code size growth. There's room for much more
optimization in this space.
llvm-svn: 262982
Implements a mostly-conventional redzone for the userspace
stack. Because we have unsigned load/store offsets we continue to use a
local SP subtracted from the incoming SP but do not write it back to
memory.
Differential Revision: http://reviews.llvm.org/D17525
llvm-svn: 261662
Previously the stack pointer was only written back to memory in the
prolog. But this is wrong for dynamic allocas, for which
target-independent codegen handles SP updates after the prolog (and
possibly even in another BB). Instead update the SP global in
ADJCALLSTACKDOWN which is generated after the SP update sequence.
This will have further refinements when we add red zone support.
llvm-svn: 261579
LLVM converts adds into ors when it can prove that the operands don't share
any non-zero bits. Teach address folding to recognize or instructions with
constant operands with this property that can be folded into addresses as
if they were adds.
llvm-svn: 261562
The stack pointer is bumped when there is a frame pointer or when there
are static-size objects, but was only getting written back when there
were static-size objects.
llvm-svn: 261453
While we still do want reducible control flow, the RequiresStructuredCFG
flag imposes more strict structure constraints than WebAssembly wants.
Unsetting this flag enables critical edge splitting and tail merging.
Also, disable TailDuplication explicitly, as it doesn't support virtual
registers, and was previously only disabled by the RequiresStructuredCFG
flag.
llvm-svn: 261190
This fixes very slow compilation on
test/CodeGen/Generic/2010-11-04-BigByval.ll . Note that MaxStoresPerMemcpy
and friends are not yet carefully tuned so the cutoff point is currently
somewhat arbitrary. However, it's important that there be a cutoff point
so that we don't emit unbounded quantities of loads and stores.
llvm-svn: 261050
The register stackifier currently checks for intervening stores (and
loads that may alias them) but doesn't account for the fact that the
instruction being moved may affect intervening loads.
Differential Revision: http://reviews.llvm.org/D17298
llvm-svn: 261014
CopyToReg nodes don't support FrameIndex operands. Other targets select
the FI to some LEA-like instruction, but since we don't have that, we
need to insert some kind of instruction that can take an FI operand and
produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy
copy_local between Op and its FI operand. This results in a redundant
copy which we should optimize away later (maybe in the post-FI-lowering
peephole pass).
Differential Revision: http://reviews.llvm.org/D17213
llvm-svn: 260987
WebAssembly doesn't require full RPO; topological sorting is sufficient and
can preserve more of the MachineBlockPlacement ordering. Unfortunately, this
still depends a lot on heuristics, because while we use the
MachineBlockPlacement ordering as a guide, we can't use it in places where
it isn't topologically ordered. This area will require further attention.
llvm-svn: 260978
This avoids some complications updating LiveIntervals to be aware of the new
register lifetimes, because we can just compute new intervals from scratch
rather than describe how the old ones have been changed.
llvm-svn: 260971
Instead of passing varargs directly on the user stack, allocate a buffer in
the caller's stack frame and pass a pointer to it. This simplifies the C
ABI (e.g. non-C callers of C functions do not need to use C's user stack if
they have their own mechanism) and allows further optimizations in the future
(e.g. fewer functions may need to use the stack).
Differential Revision: http://reviews.llvm.org/D17048
llvm-svn: 260421
Previously the code assumed all uses of FI on loads and stores were as
addresses. This checks whether the use is the address or a value and
handles the latter case as it does for non-memory instructions.
llvm-svn: 259306
The previous code was incorrect (can't getReg a frameindex). We could instead optimize it to reduce tree height, but I'm not sure that's worthwhile yet because we then try to eliminate the frameindex.
This patch also fixes frame index elimination for operations which may load or store: it used to assume the base was operand 2 and immediate offset operand 1. That's not true for stores, where they're 4 and 3.
llvm-svn: 259305
Refine the test for whether an instruction is in an expression tree so that
it detects when one tree ends and another begins, so we can place a block
at that point, rather than continuing to find the first instruction not in
a tree at all.
llvm-svn: 259294
Add support for frame pointer use in prolog/epilog.
Supports dynamic allocas but not yet over-aligned locals.
Target-independend CG generates SP updates, but we still need to write
back the SP value to memory when necessary.
llvm-svn: 259220
This patch revamps the RegStackifier pass with a new tree traversal mechanism,
enabling three major new features:
- Stackification of values with multiple uses, using the result value of set_local
- More aggressive stackification of instructions with side effects
- Reordering operands in commutative instructions to enable more stackification.
llvm-svn: 259009
Summary:
Just does the simple allocation of a stack object and passes
a pointer to the callee.
Differential Revision: http://reviews.llvm.org/D16610
llvm-svn: 258989
r258781 optimized memcpy/memmove/memcpy so the intrinsic call can return its first argument, but missed the frame index case. Teach it to ignore that case so C code doesn't assert out in these cases.
llvm-svn: 258851
These calls return their first argument, but because LLVM uses an intrinsic
with a void return type, they can't use the returned attribute. Generalize
the store results pass to optimize these calls too.
llvm-svn: 258781
For historic reasons, the behavior of .align differs between targets.
Fortunately, there are alternatives, .p2align and .balign, which make the
interpretation of the parameter explicit, and which behave consistently across
targets.
This patch teaches MC to use .p2align instead of .align, so that people reading
code for multiple architectures don't have to remember which way each platform
does its .align directive.
Differential Revision: http://reviews.llvm.org/D16549
llvm-svn: 258750
Instructions can be DCE'd after the RegStackify pass. If the instruction which
would be the pop for what would be a push is removed, don't use a push.
llvm-svn: 258694