After discussion in `D93482` we found that the some of the clauses were not
following the common OmpClause convention.
The benefits of using OmpClause:
- Functionalities from structure checker are mostly aligned to work with
`llvm::omp::Clause`.
- The unparsing as well can take advantage.
- Homogeneity with OpenACC and rest of the clauses in OpenMP.
- Could even generate the parser with TableGen, when there is homogeneity.
- It becomes confusing when to use `flangClass` and `flangClassValue` inside
TableGen, if incase we generate parser using TableGen we could have only a
single `let expression`.
This patch makes `OmpDistScheduleClause` clause part of `OmpClause`.
The unparse function for `OmpDistScheduleClause` is adapted since the keyword
and parenthesis are issued by the corresponding unparse function for
`parser::OmpClause::DistSchedule`.
Reviewed By: clementval, kiranktp
Differential Revision: https://reviews.llvm.org/D93644
After discussion in `D93482` we found that the some of the clauses were not
following the common OmpClause convention.
The benefits of using OmpClause:
- Functionalities from structure checker are mostly aligned to work with
`llvm::omp::Clause`.
- The unparsing as well can take advantage.
- Homogeneity with OpenACC and rest of the clauses in OpenMP.
- Could even generate the parser with TableGen, when there is homogeneity.
- It becomes confusing when to use `flangClass` and `flangClassValue` inside
TableGen, if incase we generate parser using TableGen we could have only a
single `let expression`.
This patch makes `OmpNoWait` clause part of `OmpClause`.
Reviewed By: clementval, kiranktp
Differential Revision: https://reviews.llvm.org/D93643
After discussion in `D93482` we found that the some of the clauses were not
following the common OmpClause convention.
The benefits of using OmpClause:
- Functionalities from structure checker are mostly aligned to work with
`llvm::omp::Clause`.
- The unparsing as well can take advantage.
- Homogeneity with OpenACC and rest of the clauses in OpenMP.
- Could even generate the parser with TableGen, when there is homogeneity.
- It becomes confusing when to use `flangClass` and `flangClassValue` inside
TableGen, if incase we generate parser using TableGen we could have only a
single `let expression`.
This patch makes `OmpProcBindClause` clause part of `OmpClause`.
The unparse function is dropped as the unparsing is done by `WALK_NESTED_ENUM`
for `OmpProcBindClause`.
Reviewed By: clementval, kiranktp
Differential Revision: https://reviews.llvm.org/D93642
After discussion in `D93482` we found that the some of the clauses were not
following the common OmpClause convention.
The benefits of using OmpClause:
- Functionalities from structure checker are mostly aligned to work with
`llvm::omp::Clause`.
- The unparsing as well can take advantage.
- Homogeneity with OpenACC and rest of the clauses in OpenMP.
- Could even generate the parser with TableGen, when there is homogeneity.
- It becomes confusing when to use `flangClass` and `flangClassValue` inside
TableGen, if incase we generate parser using TableGen we could have only a
single `let expression`.
This patch makes `OmpDefaultClause` clause part of `OmpClause`.
The unparse function is dropped as the unparsing is done by `WALK_NESTED_ENUM`
for `OmpDefaultClause`.
Reviewed By: clementval, kiranktp
Differential Revision: https://reviews.llvm.org/D93641
After discussion in `D93482` we found that the some of the clauses were not
following the common OmpClause convention.
The benefits of using OmpClause:
- Functionalities from structure checker are mostly aligned to work with
`llvm::omp::Clause`.
- The unparsing as well can take advantage.
- Homogeneity with OpenACC and rest of the clauses in OpenMP.
- Could even generate the parser with TableGen, when there is homogeneity.
- It becomes confusing when to use `flangClass` and `flangClassValue` inside
TableGen, if incase we generate parser using TableGen we could have only a
single `let expression`.
This patch makes `allocate` clause part of `OmpClause`.The unparse function for
`OmpAllocateClause` is adapted since the keyword and parenthesis are issued by
the corresponding unparse function for `parser::OmpClause::Allocate`.
Reviewed By: clementval
Differential Revision: https://reviews.llvm.org/D93640
Define vector compare intrinsics and lower them to V instructions.
We work with @rogfer01 from BSC to come out this patch.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Hsiangkai Wang <kai.wang@sifive.com>
Differential Revision: https://reviews.llvm.org/D93368
Define vleff intrinsics and lower to V instructions.
We work with @rogfer01 from BSC to come out this patch.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Zakk Chen <zakk.chen@sifive.com>
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D93516
This defines vmadd, vmacc, vnmsub, and vnmsac intrinsics and
lower to V instructions.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: ShihPo Hung <shihpo.hung@sifive.com>
Differential Revision: https://reviews.llvm.org/D93632
This is a follow-up patch of D87045.
The patch implements "loop-nest mode" for `LPMUpdater` and `FunctionToLoopPassAdaptor` in which only top-level loops are operated.
`createFunctionToLoopPassAdaptor` decides whether the returned adaptor is in loop-nest mode or not based on the given pass. If the pass is a loop-nest pass or the pass is a `LoopPassManager` which contains only loop-nest passes, the loop-nest version of adaptor is returned; otherwise, the normal (loop) version of adaptor is returned.
Reviewed By: Whitney
Differential Revision: https://reviews.llvm.org/D87531
Define the `vand`, `vor` and `vxor` IR intrinsics for the respective V instructions.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Evandro Menezes <evandro.menezes@sifive.com>
Differential Revision: https://reviews.llvm.org/D93574
CanBeUnnamed is rarely false. Splitting to a createNamedTempSymbol makes the
intention clearer and matches the direction of reverted r240130 (to drop the
unneeded parameters).
No behavior change.
AMDGPUTargetMachine::adjustPassManager() adds some alias analyses to the
legacy PM. We need a way to do the same for the new PM in order to port
AMDGPUTargetMachine::adjustPassManager() to the new PM.
Currently the new PM adds alias analyses by creating an AAManager via
PassBuilder and overriding the AAManager a PassManager uses via
FunctionAnalysisManager::registerPass().
We will continue to respect a custom AA pipeline that specifies an exact
AA pipeline to use, but for "default" we will now add alias analyses
that backends specify. Most uses of PassManager use the "default"
AAManager created by PassBuilder::buildDefaultAAPipeline(). Backends can
override the newly added TargetMachine::registerAliasAnalyses() to add custom
alias analyses.
Reviewed By: ychen
Differential Revision: https://reviews.llvm.org/D93261
Use the TableGen feature to have enum values for clauses.
Next step will be to extend the MLIR part used currently by OpenMP
to use the same enum on the dialect side.
This patch also add function that convert the enum to StringRef to be
used on the dump-parse-tree from flang.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D93576
byval arguments should mostly get the same treatment as noalias
arguments in alias analysis. This was not the case for the
isIdentifiedFunctionLocal() function.
Marking byval arguments as identified function local means that
they cannot alias with other arguments, which I believe is correct.
Differential Revision: https://reviews.llvm.org/D93602
Before this patch, you needed to use `AutoNormalizeEnumJoined` whenever you wanted to **de**normalize joined enum.
Besides the naming confusion, this means the fact the option is joined is specified in two places: in the normalization multiclass and in the `Joined<["-"], ...>` multiclass.
This patch makes this work automatically, taking into account the `OptionClass` of options.
Also, the enum denormalizer now just looks up the spelling of the present enum case in a table and forwards it to the string denormalizer.
I also added more tests that exercise this.
Reviewed By: dexonsmith
Original patch by Daniel Grumberg.
Differential Revision: https://reviews.llvm.org/D84189
This replaces the existing `MarshallingInfoFlag<...>, IsNegative` with simpler `MarshallingInfoNegativeFlag`.
Reviewed By: dexonsmith
Original patch by Daniel Grumberg.
Differential Revision: https://reviews.llvm.org/D84675
This patch base on D93366, and define vector fixed-point intrinsics.
1. vaaddu/vaadd/vasubu/vasub
2. vsmul
3. vssrl/vssra
4. vnclipu/vnclip
We work with @rogfer01 from BSC to come out this patch.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: ShihPo Hung <shihpo.hung@sifive.com>
Differential Revision: https://reviews.llvm.org/D93508
This patch does two things:
1: fix the typo that intrinsic mfvscr should be with no readmem property
2: since VSCR is not modeled yet, add has side effect for SAT bit clobber
intrinsics/instructions.
Reviewed By: steven.zhang
Differential Revision: https://reviews.llvm.org/D90807
Currently there is an issue where the legacy pass manager uses a different OptBisect counter than the new pass manager.
This fix makes the npm OptBisectInstrumentation use the global OptBisect.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D92897
Define vector vfwmul intrinsics and lower them to V instructions.
We work with @rogfer01 from BSC to come out this patch.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Hsiangkai Wang <kai.wang@sifive.com>
Differential Revision: https://reviews.llvm.org/D93584
Define vector vfwadd/vfwsub intrinsics and lower them to V
instructions.
We work with @rogfer01 from BSC to come out this patch.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Hsiangkai Wang <kai.wang@sifive.com>
Differential Revision: https://reviews.llvm.org/D93583
Define vector vfsgnj/vfsgnjn/vfsgnjx intrinsics and lower them to V
instructions.
We work with @rogfer01 from BSC to come out this patch.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Hsiangkai Wang <kai.wang@sifive.com>
Differential Revision: https://reviews.llvm.org/D93581
Define vector vfmul/vfdiv/vfrdiv intrinsics and lower them to V instructions.
We work with @rogfer01 from BSC to come out this patch.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Hsiangkai Wang <kai.wang@sifive.com>
Differential Revision: https://reviews.llvm.org/D93580
Extracted regions can have both inputs and outputs. In addition, the
CodeExtractor removes inputs that are only used in llvm.assumes, and
sunken allocas (values are used entirely in the extracted region as
denoted by lifetime intrinsics). We also cannot combine sections that
have different constants in the same structural location, and these
constants will have to elevated to argument. This patch deduplicates
extracted functions that only have inputs and non of the special cases.
We test that correctly deduplicate in:
test/Transforms/IROutliner/outlining-same-globals.ll
test/Transforms/IROutliner/outlining-same-constants.ll
test/Transforms/IROutliner/outlining-different-structure.ll
Reviewers: jroelofs, paquette
Differential Revision: https://reviews.llvm.org/D86978
Extracted regions can have both inputs and outputs. In addition, the
CodeExtractor removes inputs that are only used in llvm.assumes, and
sunken allocas (values are used entirely in the extracted region as
denoted by lifetime intrinsics). We also cannot combine sections that
have different constants in the same structural location, and these
constants will have to elevated to argument. This patch deduplicates
extracted functions that only have inputs and non of the special cases.
We test that correctly deduplicate in:
test/Transforms/IROutliner/outlining-same-globals.ll
test/Transforms/IROutliner/outlining-same-constants.ll
test/Transforms/IROutliner/outlining-different-structure.ll
These properties aren't additive. They are closer to ReadOnly and
WriteOnly. The default is ReadWrite. ReadMem cancels the write property and
WriteMem cancels the read property. Combining them leaves neither.
This patch checks that when we process WriteMem, the Mod flag is
still set. And for ReadMem we check that the Ref flag set still set.
I've updated 2 target intrinsics that were combining these properties.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D93571
inputs.
Extracted regions can have both inputs and outputs. In addition, the
CodeExtractor removes inputs that are only used in llvm.assumes, and
sunken allocas (values are used entirely in the extracted region as
denoted by lifetime intrinsics). We also cannot combine sections that
have different constants in the same structural location, and these
constants will have to elevated to argument. This patch limits the
extracted regions to those that only require inputs, and do not have any
other special cases.
We test that we do not outline the wrong constants in:
test/Transforms/IROutliner/outliner-different-constants.ll
test/Transforms/IROutliner/outliner-different-globals.ll
test/Transforms/IROutliner/outliner-constant-vs-registers.ll
We test that correctly outline in:
test/Transforms/IROutliner/outlining-same-globals.ll
test/Transforms/IROutliner/outlining-same-constants.ll
test/Transforms/IROutliner/outlining-different-structure.ll
Reviewers: paquette, plofti
Differential Revision: https://reviews.llvm.org/D86977
Define vlxe/vsxe intrinsics and lower to vlxei<EEW>/vsxei<EEW>
instructions.
We work with @rogfer01 from BSC to come out this patch.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Zakk Chen <zakk.chen@sifive.com>
Differential Revision: https://reviews.llvm.org/D93471
Introduce CHECK modifiers that change the behavior of the CHECK
directive. Also add a LITERAL modifier for cases where matching could
end requiring escaping strings interpreted as regex where only
literal/fixed string matching is desired (making the CHECK's more
difficult to write/fragile and difficult to interpret).
This patch adds two IR intrinsics for vsetvli instruction. One to set the vector length to a user specified value and one to set it to vlmax. The vlmax uses the X0 source register encoding.
Clang builtins will follow in a separate patch
Differential Revision: https://reviews.llvm.org/D92973
This time with tests.
Original message:
Similar to D93365, but for floating point. No need for special ISD opcodes
though. We can directly isel these from intrinsics. I had to use anyfloat_ty
instead of anyvector_ty in the intrinsics to make LLVMVectorElementType not
crash when imported into the -gen-dag-isel tablegen backend.
Differential Revision: https://reviews.llvm.org/D93426
Similar to D93365, but for floating point. No need for special ISD opcodes
though. We can directly isel these from intrinsics. I had to use anyfloat_ty
instead of anyvector_ty in the intrinsics to make LLVMVectorElementType not
crash when imported into the -gen-dag-isel tablegen backend.
Differential Revision: https://reviews.llvm.org/D93426
This adds intrinsics for vmv.x.s and vmv.s.x.
I've used stricter type constraints on these intrinsics than what we've been doing on the arithmetic intrinsics so far. This will allow us to not need to pass the scalar type to the Intrinsic::getDeclaration call when creating these intrinsics.
A custom ISD is used for vmv.x.s in order to implement the change in computeNumSignBitsForTargetNode which can remove sign extends on the result.
I also modified the MC layer description of these instructions to show the tied source/dest operand. This is different than what we do for masked instructions where we drop the tied source operand when converting to MC. But it is a more accurate description of the instruction. We can't do this for masked instructions since we use the same MC instruction for masked and unmasked. Tools like llvm-mca operate in the MC layer and rely on ins/outs and Uses/Defs for analysis so I don't know if we'll be able to maintain the current behavior for masked instructions. So I went with the accurate description here since it was easy.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D93365
The main change is to add a 'IsDecl' field to DIModule so
that when IsDecl is set to true, the debug info entry generated
for the module would be marked as a declaration. That way, the debugger
would look up the definition of the module in the gloabl scope.
Please see the comments in llvm/test/DebugInfo/X86/dimodule.ll
for what the debug info entries would look like.
Differential Revision: https://reviews.llvm.org/D93462
We work with @rogfer01 from BSC to come out this patch.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Craig Topper <craig.topper@sifive.com>
Differential Revision: https://reviews.llvm.org/D93514
Similar to D69312, and documented in D69839, the IRBuilder needs to add
the strictfp attribute to invoke instructions when constrained floating
point is enabled.
This is try 2, with the test corrected.
Differential Revision: https://reviews.llvm.org/D93134