Summary:
Adds a RegisterBank tablegen class that can be used to declare the register
banks and an associated tablegen pass to generate the necessary code.
Changes since first commit attempt:
* Added missing guards
* Added more missing guards
* Found and fixed a use-after-free bug involving Twine locals
Reviewers: t.p.northover, ab, rovka, qcolombet
Reviewed By: qcolombet
Subscribers: aditya_nandakumar, rengolin, kristof.beyls, vkalintiris, mgorny, dberris, llvm-commits, rovka
Differential Revision: https://reviews.llvm.org/D27338
llvm-svn: 292478
Summary:
Adds a RegisterBank tablegen class that can be used to declare the register
banks and an associated tablegen pass to generate the necessary code.
Changes since last commit:
The new tablegen pass is now correctly guarded by LLVM_BUILD_GLOBAL_ISEL and
this should fix the buildbots however it may not be the whole fix. The previous
buildbot failures suggest there may be a memory bug lurking that I'm unable to
reproduce (including when using asan) or spot in the source. If they re-occur
on this commit then I'll need assistance from the bot owners to track it down.
Reviewers: t.p.northover, ab, rovka, qcolombet
Reviewed By: qcolombet
Subscribers: aditya_nandakumar, rengolin, kristof.beyls, vkalintiris, mgorny, dberris, llvm-commits, rovka
Differential Revision: https://reviews.llvm.org/D27338
llvm-svn: 292367
Summary:
Adds a RegisterBank tablegen class that can be used to declare the register
banks and an associated tablegen pass to generate the necessary code.
Reviewers: t.p.northover, ab, rovka, qcolombet
Subscribers: aditya_nandakumar, rengolin, kristof.beyls, vkalintiris, mgorny, dberris, llvm-commits, rovka
Differential Revision: https://reviews.llvm.org/D27338
llvm-svn: 292132
This adds a basic tablegen backend that analyzes the SelectionDAG
patterns to find simple ones that are eligible for GlobalISel-emission.
That's similar to FastISel, with one notable difference: we're not fed
ISD opcodes, so we need to map the SDNode operators to generic opcodes.
That's done using GINodeEquiv in TargetGlobalISel.td.
Otherwise, this is mostly boilerplate, and lots of filtering of any kind
of "complicated" pattern. On AArch64, this is sufficient to match G_ADD
up to s64 (to ADDWrr/ADDXrr) and G_BR (to B).
Differential Revision: https://reviews.llvm.org/D26878
llvm-svn: 290284
This patch updates a bunch of places where add_dependencies was being explicitly called to add dependencies on intrinsics_gen to instead use the DEPENDS named parameter. This cleanup is needed for a patch I'm working on to add a dependency debugging mode to the build system.
llvm-svn: 287206
The previous names were both misleading (the MachineLegalizer actually
contained the info tables) and inconsistent with the selector & translator (in
having a "Machine") prefix. This should make everything sensible again.
The only functional change is the name of a couple of command-line options.
llvm-svn: 284287
Avoid generating indexed vector instructions for Exynos. This is needed for
fmla/fmls/fmul/fmulx. For example, the instruction
fmla v0.4s, v1.4s, v2.s[1]
is less efficient than the instructions
dup v2.4s, v2.s[1]
fmla v0.4s, v1.4s, v2.4s
Patch written by Abderrazek Zaafrani.
Differential Revision: https://reviews.llvm.org/D21571
llvm-svn: 283663
This adds the actual MachineLegalizeHelper to do the work and a trivial pass
wrapper that legalizes all instructions in a MachineFunction. Currently the
only transformation supported is splitting up a vector G_ADD into one acting on
smaller vectors.
llvm-svn: 276461
The way the named arguments for various system instructions are handled at the
moment has a few problems:
- Large-scale duplication between AArch64BaseInfo.h and AArch64BaseInfo.cpp
- That weird Mapping class that I have no idea what I was on when I thought
it was a good idea.
- Searches are performed linearly through the entire list.
- We print absolutely all registers in upper-case, even though some are
canonically mixed case (SPSel for example).
- The ARM ARM specifies sysregs in terms of 5 fields, but those are relegated
to comments in our implementation, with a slightly opaque hex value
indicating the canonical encoding LLVM will use.
This adds a new TableGen backend to produce efficiently searchable tables, and
switches AArch64 over to using that infrastructure.
llvm-svn: 274576
when GISel is not built.
The positive side effects are:
- We do not have to define dummy implementation
- We do not have to do weird gymnastic to avoid like issues (like
missing constructor or vtable for the base classes)
llvm-svn: 265570
Summary:
This change will add a pass to remove unnecessary zero copies in target blocks
of cbz/cbnz instructions. E.g., the copy instruction in the code below can be
removed because the cbz jumps to BB1 when x0 is zero :
BB0:
cbz x0, .BB1
BB1:
mov x0, xzr
Jun
Reviewers: gberry, jmolloy, HaoLiu, MatzeB, mcrosier
Subscribers: mcrosier, mssimpso, haicheng, bmakam, llvm-commits, aemerson, rengolin
Differential Revision: http://reviews.llvm.org/D16203
llvm-svn: 261004
Original message:
Get rid of the ifdefs in TargetLowering.
Introduce a new API used only by GlobalISel: CallLowering.
This API will contain target hooks dedicated to call lowering.
llvm-svn: 260998
Re-commit after adding "-aarch64-neon-syntax=generic" to fix the failure on OS X.
This patch was firstly committed in r239514, then reverted in r239544 because of a syntax incompatible failure on OS X.
llvm-svn: 239711
Revert "[AArch64] Match interleaved memory accesses into ldN/stN instructions."
Revert "Fixing MSVC 2013 build error."
The test/CodeGen/AArch64/aarch64-interleaved-accesses.ll test was failing on OS X.
llvm-svn: 239544
Some early revisions of the Cortex-A53 have an erratum (835769) whereby it is
possible for a 64-bit multiply-accumulate instruction in AArch64 state to
generate an incorrect result. The details are quite complex and hard to
determine statically, since branches in the code may exist in some
circumstances, but all cases end with a memory (load, store, or prefetch)
instruction followed immediately by the multiply-accumulate operation.
The safest work-around for this issue is to make the compiler avoid emitting
multiply-accumulate instructions immediately after memory instructions and the
simplest way to do this is to insert a NOP.
This patch implements such work-around in the backend, enabled via the option
-aarch64-fix-cortex-a53-835769.
The work-around code generation is not enabled by default.
llvm-svn: 219603
This adds target specific support for using the PBQP register allocator on the
AArch64, for the A57 cpu.
By default, the PBQP allocator is not used, unless explicitely required
on the command line with "-aarch64-pbqp".
llvm-svn: 217504
Patched by Sergey Dmitrouk.
This pass tries to make consecutive compares of values use same operands to
allow CSE pass to remove duplicated instructions. For this it analyzes
branches and adjusts comparisons with immediate values by converting:
GE -> GT
GT -> GE
LT -> LE
LE -> LT
and adjusting immediate values appropriately. It basically corrects two
immediate values towards each other to make them equal.
llvm-svn: 217220
For best-case performance on Cortex-A57, we should try to use a balanced mix of odd and even D-registers when performing a critical sequence of independent, non-quadword FP/ASIMD floating-point multiply or multiply-accumulate operations.
This pass attempts to detect situations where the register allocation may adversely affect this load balancing and to change the registers used so as to better utilize the CPU.
Ideally we'd just take each multiply or multiply-accumulate in turn and allocate it alternating even or odd registers. However, multiply-accumulates are most efficiently performed in the same functional unit as their accumulation operand. Therefore this pass tries to find maximal sequences ("Chains") of multiply-accumulates linked via their accumulation operand, and assign them all the same "color" (oddness/evenness).
This optimization affects S-register and D-register floating point multiplies and FMADD/FMAs, as well as vector (floating point only) muls and FMADD/FMA. Q register instructions (and 128-bit vector instructions) are not affected.
llvm-svn: 215199
be deleted. This will be reapplied as soon as possible and before
the 3.6 branch date at any rate.
Approved by Jim Grosbach, Lang Hames, Rafael Espindola.
This reverts commits r215111, 215115, 215116, 215117, 215136.
llvm-svn: 215154
I am sure we will be finding bits and pieces of dead code for years to
come, but this is a good start.
Thanks to Lang Hames for making MCJIT a good replacement!
llvm-svn: 215111
This commit starts with a "git mv ARM64 AArch64" and continues out
from there, renaming the C++ classes, intrinsics, and other
target-local objects for consistency.
"ARM64" test directories are also moved, and tests that began their
life in ARM64 use an arm64 triple, those from AArch64 use an aarch64
triple. Both should be equivalent though.
This finishes the AArch64 merge, and everyone should feel free to
continue committing as normal now.
llvm-svn: 209577
I'm doing this in two phases for a better "git blame" record. This
commit removes the previous AArch64 backend and redirects all
functionality to ARM64. It also deduplicates test-lines and removes
orphaned AArch64 tests.
The next step will be "git mv ARM64 AArch64" and rewire most of the
tests.
Hopefully LLVM is still functional, though it would be even better if
no-one ever had to care because the rename happens straight
afterwards.
llvm-svn: 209576
add_public_tablegen_target adds *CommonTableGen to LLVM_COMMON_DEPENDS.
LLVM_COMMON_DEPENDS affects add_llvm_library (and other add_target stuff) within its scope.
llvm-svn: 195927
Without explicit dependencies, both per-file action and in-CommonTableGen action could run in parallel.
It races to emit *.inc files simultaneously.
llvm-svn: 187780
This is essentially a stripped-down version of the ConstandIslands pass (which
always had these two functions), providing just the features necessary for
correctness.
In particular there needs to be a way to resolve the situation where a
conditional branch's destination block ends up out of range.
This issue crops up when self-hosting for AArch64.
llvm-svn: 175269
This implements the review suggestion to simplify the AArch64 backend. If we
later discover that we *really* need the extra complexity of the
ConstantIslands pass for performance reasons it can be resurrected.
llvm-svn: 175258
This moves the bit twiddling and string fiddling functions required by other
parts of the backend into a separate library. Previously they resided in
AArch64Desc, which created a circular dependency between various components.
llvm-svn: 174369
This patch adds support for AArch64 (ARM's 64-bit architecture) to
LLVM in the "experimental" category. Currently, it won't be built
unless requested explicitly.
This initial commit should have support for:
+ Assembly of all scalar (i.e. non-NEON, non-Crypto) instructions
(except the late addition CRC instructions).
+ CodeGen features required for C++03 and C99.
+ Compilation for the "small" memory model: code+static data <
4GB.
+ Absolute and position-independent code.
+ GNU-style (i.e. "__thread") TLS.
+ Debugging information.
The principal omission, currently, is performance tuning.
This patch excludes the NEON support also reviewed due to an outbreak of
batshit insanity in our legal department. That will be committed soon bringing
the changes to precisely what has been approved.
Further reviews would be gratefully received.
llvm-svn: 174054