This creates a new library called BinaryFormat that has all of
the headers from llvm/Support containing structure and layout
definitions for various types of binary formats like dwarf, coff,
elf, etc as well as the code for identifying a file from its
magic.
Differential Revision: https://reviews.llvm.org/D33843
llvm-svn: 304864
This patch adds support for the MachO .alt_entry assembly directive, and uses
it for global aliases with non-zero GEP offsets. The alt_entry flag indicates
that a symbol should be layed out immediately after the preceding symbol.
Conceptually it introduces an alternate entry point for a function or data
structure. E.g.:
safe_foo:
// check preconditions for foo
.alt_entry fast_foo
fast_foo:
// body of foo, can assume preconditions.
The .alt_entry flag is also implicitly set on assembly aliases of the form:
a = b + C
where C is a non-zero constant, since these have the same effect as an
alt_entry symbol: they introduce a label that cannot be moved relative to the
preceding one. Setting the alt_entry flag on aliases of this form fixes
http://llvm.org/PR25381.
llvm-svn: 263521
This matches other assemblers and is less unexpected (e.g. PR23227).
On ELF, I tried binutils gas v2.24 and nasm 2.10.09, and they both
agree on LShr. On COFF, I couldn't get my hands on an assembler yet,
so don't change the behavior. For now, don't change it on non-AArch64
Darwin either, as the other assembler is gas v1.38, which does an AShr.
llvm-svn: 235963
The fixes are to note that AArch64 has additional restrictions on when local
relocations can be used. In particular, ld64 requires that relocations to
cstring/cfstrings use linker visible symbols.
Original message:
In an assembly expression like
bar:
.long L0 + 1
the intended semantics is that bar will contain a pointer one byte past L0.
In sections that are merged by content (strings, 4 byte constants, etc), a
single position in the section doesn't give the linker enough information.
For example, it would not be able to tell a relocation must point to the
end of a string, since that would look just like the start of the next.
The solution used in ELF to use relocation with symbols if there is a non-zero
addend.
In MachO before this patch we would just keep all symbols in some sections.
This would miss some cases (only cstrings on x86_64 were implemented) and was
inefficient since most relocations have an addend of 0 and can be represented
without the symbol.
This patch implements the non-zero addend logic for MachO too.
llvm-svn: 226503
One is that AArch64 has additional restrictions on when local relocations can
be used. We have to take those into consideration when deciding to put a L
symbol in the symbol table or not.
The other is that ld64 requires the relocations to cstring to use linker
visible symbols on AArch64.
Thanks to Michael Zolotukhin for testing this!
Remove doesSectionRequireSymbols.
In an assembly expression like
bar:
.long L0 + 1
the intended semantics is that bar will contain a pointer one byte past L0.
In sections that are merged by content (strings, 4 byte constants, etc), a
single position in the section doesn't give the linker enough information.
For example, it would not be able to tell a relocation must point to the
end of a string, since that would look just like the start of the next.
The solution used in ELF to use relocation with symbols if there is a non-zero
addend.
In MachO before this patch we would just keep all symbols in some sections.
This would miss some cases (only cstrings on x86_64 were implemented) and was
inefficient since most relocations have an addend of 0 and can be represented
without the symbol.
This patch implements the non-zero addend logic for MachO too.
llvm-svn: 225644
This is affecting the behavior of some ObjC++ / AArch64 test cases on Darwin.
Reverting to get the bots green while I track down the source of the changed
behavior.
llvm-svn: 225311
The issues was that AArch64 has additional restrictions on when local
relocations can be used. We have to take those into consideration when
deciding to put a L symbol in the symbol table or not.
Original message:
Remove doesSectionRequireSymbols.
In an assembly expression like
bar:
.long L0 + 1
the intended semantics is that bar will contain a pointer one byte past L0.
In sections that are merged by content (strings, 4 byte constants, etc), a
single position in the section doesn't give the linker enough information.
For example, it would not be able to tell a relocation must point to the
end of a string, since that would look just like the start of the next.
The solution used in ELF to use relocation with symbols if there is a non-zero
addend.
In MachO before this patch we would just keep all symbols in some sections.
This would miss some cases (only cstrings on x86_64 were implemented) and was
inefficient since most relocations have an addend of 0 and can be represented
without the symbol.
This patch implements the non-zero addend logic for MachO too.
llvm-svn: 225048
In an assembly expression like
bar:
.long L0 + 1
the intended semantics is that bar will contain a pointer one byte past L0.
In sections that are merged by content (strings, 4 byte constants, etc), a
single position in the section doesn't give the linker enough information.
For example, it would not be able to tell a relocation must point to the
end of a string, since that would look just like the start of the next.
The solution used in ELF to use relocation with symbols if there is a non-zero
addend.
In MachO before this patch we would just keep all symbols in some sections.
This would miss some cases (only cstrings on x86_64 were implemented) and was
inefficient since most relocations have an addend of 0 and can be represented
without the symbol.
This patch implements the non-zero addend logic for MachO too.
llvm-svn: 224985
Every target we support has support for assembly that looks like
a = b - c
.long a
What is special about MachO is that the above combination suppresses the
production of a relocation.
With this change we avoid producing the intermediary labels when they don't
add any value.
llvm-svn: 220256
Summary:
AsmPrinter::EmitInlineAsm() will no longer use the EmitRawText() call for
targets with mature MC support. Such targets will always parse the inline
assembly (even when emitting assembly). Targets without mature MC support
continue to use EmitRawText() for assembly output.
The hasRawTextSupport() check in AsmPrinter::EmitInlineAsm() has been replaced
with MCAsmInfo::UseIntegratedAs which when true, causes the integrated assembler
to parse inline assembly (even when emitting assembly output). UseIntegratedAs
is set to true for targets that consider any failure to parse valid assembly
to be a bug. Target specific subclasses generally enable the integrated
assembler in their constructor. The default value can be overridden with
-no-integrated-as.
All tests that rely on inline assembly supporting invalid assembly (for example,
those that use mnemonics such as 'foo' or 'hello world') have been updated to
disable the integrated assembler.
Changes since review (and last commit attempt):
- Fixed test failures that were missed due to configuration of local build.
(fixes crash.ll and a couple others).
- Fixed tests that happened to pass because the local build was on X86
(should fix 2007-12-17-InvokeAsm.ll)
- mature-mc-support.ll's should no longer require all targets to be compiled.
(should fix ARM and PPC buildbots)
- Object output (-filetype=obj and similar) now forces the integrated assembler
to be enabled regardless of default setting or -no-integrated-as.
(should fix SystemZ buildbots)
Reviewers: rafael
Reviewed By: rafael
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2686
llvm-svn: 201333
Summary:
AsmPrinter::EmitInlineAsm() will no longer use the EmitRawText() call for targets with mature MC support. Such targets will always parse the inline assembly (even when emitting assembly). Targets without mature MC support continue to use EmitRawText() for assembly output.
The hasRawTextSupport() check in AsmPrinter::EmitInlineAsm() has been replaced with MCAsmInfo::UseIntegratedAs which when true, causes the integrated assembler to parse inline assembly (even when emitting assembly output). UseIntegratedAs is set to true for targets that consider any failure to parse valid assembly to be a bug. Target specific subclasses generally enable the integrated assembler in their constructor. The default value can be overridden with -no-integrated-as.
All tests that rely on inline assembly supporting invalid assembly (for example, those that use mnemonics such as 'foo' or 'hello world') have been updated to disable the integrated assembler.
Reviewers: rafael
Reviewed By: rafael
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2686
llvm-svn: 201237
Before this patch any program that wanted to know the final symbol name of a
GlobalValue had to link with Target.
This patch implements a compromise solution where the mangler uses DataLayout.
This way, any tool that already links with Target (llc, clang) gets the exact
behavior as before and new IR files can be mangled without linking with Target.
With this patch the mangler is constructed with just a DataLayout and DataLayout
is extended to include the information the Mangler needs.
llvm-svn: 198438
Accepting quotes is a property of an assembler, not of an object file. For
example, ELF can support any names for sections and symbols, but the gnu
assembler only accepts quotes in some contexts and llvm-mc in a few more.
LLVM should not produce different symbols based on a guess about which assembler
will be reading the code it is printing.
llvm-svn: 194575
For some reason .lcomm uses byte alignment and .comm log2 alignment so we can't
use the same setting for both. Fix this by reintroducing the LCOMM enum.
I verified this against mingw's gcc.
llvm-svn: 163420
- Darwin lied about not supporting .lcomm and turned it into zerofill in the
asm parser. Push the zerofill-conversion down into macho-specific code.
- This makes the tri-state LCOMMType enum superfluous, there are no targets
without .lcomm.
- Do proper error reporting when trying to use .lcomm with alignment on a target
that doesn't support it.
- .comm and .lcomm alignment was parsed in bytes on COFF, should be power of 2.
- Fixes PR13755 (.lcomm crashes on ELF).
llvm-svn: 163395
Use a dedicated MachO load command to annotate data-in-code regions.
This is the same format the linker produces for final executable images,
allowing consistency of representation and use of introspection tools
for both object and executable files.
Data-in-code regions are annotated via ".data_region"/".end_data_region"
directive pairs, with an optional region type.
data_region_directive := ".data_region" { region_type }
region_type := "jt8" | "jt16" | "jt32" | "jta32"
end_data_region_directive := ".end_data_region"
The previous handling of ARM-style "$d.*" labels was broken and has
been removed. Specifically, it didn't handle ARM vs. Thumb mode when
marking the end of the section.
rdar://11459456
llvm-svn: 157062
it is both inefficient and unexpected by dwarfdump. Change to
a DW_FORM_data4.
While in here, change the predicate name to reflect that the position
is not really absolute (it is an offset), just that the linker needs a
relocation.
llvm-svn: 130846
for all symbol differences and can drop the old EmitPCRelSymbolValue
method.
This also make getExprForFDESymbol on ELF equal to the one on MachO, and it
can be made non-virtual.
llvm-svn: 130634