add_public_tablegen_target adds *CommonTableGen to LLVM_COMMON_DEPENDS.
LLVM_COMMON_DEPENDS affects add_llvm_library (and other add_target stuff) within its scope.
llvm-svn: 195927
The set of circumstances where the writeback register is allowed to be in the
list of registers is rather baroque, but I think this implements them all on
the assembly parsing side.
For disassembly, we still warn about an ARM-mode LDM even if the architecture
revision is < v7 (the required architecture information isn't available). It's
a silly instruction anyway, so hopefully no-one will mind.
rdar://problem/15223374
llvm-svn: 193185
This adds a new decoder table/namespace 'VFPV8', as these instructions have their
top 4 bits as 0b1111, while other Thumb instructions have 0b1110.
llvm-svn: 185642
Handle the case when the disassembler table can't tell
the difference between some encodings of QADD and CPS.
Add some necessary safe guards in CPS decoding as well.
llvm-svn: 183610
These instructions are deprecated oddities, but we still need to be able to
disassemble (and reassemble) them if and when they're encountered.
Patch by Amaury de la Vieuville.
llvm-svn: 183011
There was exactly one caller using this API right, the others were relying on
specific behavior of the default implementation. Since it's too hard to use it
right just remove it and standardize on the default behavior.
Defines away PR16132.
llvm-svn: 182636
This is a basic first step towards symbolization of disassembled
instructions. This used to be done using externally provided (C API)
callbacks. This patch introduces:
- the MCSymbolizer class, that mimics the same functions that were used
in the X86 and ARM disassemblers to symbolize immediate operands and
to annotate loads based off PC (for things like c string literals).
- the MCExternalSymbolizer class, which implements the old C API.
- the MCRelocationInfo class, which provides a way for targets to
translate relocations (either object::RelocationRef, or disassembler
C API VariantKinds) to MCExprs.
- the MCObjectSymbolizer class, which does symbolization using what it
finds in an object::ObjectFile. This makes simple symbolization (with
no fancy relocation stuff) work for all object formats!
- x86-64 Mach-O and ELF MCRelocationInfos.
- A basic ARM Mach-O MCRelocationInfo, that provides just enough to
support the C API VariantKinds.
Most of what works in otool (the only user of the old symbolization API
that I know of) for x86-64 symbolic disassembly (-tvV) works, namely:
- symbol references: call _foo; jmp 15 <_foo+50>
- relocations: call _foo-_bar; call _foo-4
- __cf?string: leaq 193(%rip), %rax ## literal pool for "hello"
Stub support is the main missing part (because libObject doesn't know,
among other things, about mach-o indirect symbols).
As for the MCSymbolizer API, instead of relying on the disassemblers
to call the tryAdding* methods, maybe this could be done automagically
using InstrInfo? For instance, even though PC-relative LEAs are used
to get the address of string literals in a typical Mach-O file, a MOV
would be used in an ELF file. And right now, the explicit symbolization
only recognizes PC-relative LEAs. InstrInfo should have already have
most of what is needed to know what to symbolize, so this can
definitely be improved.
I'd also like to remove object::RelocationRef::getValueString (it seems
only used by relocation printing in objdump), as simply printing the
created MCExpr is definitely enough (and cleaner than string concats).
llvm-svn: 182625
"hint" space for Thumb actually overlaps the encoding space of the CPS
instruction. In actuality, hints can be defined as CPS instructions where imod
and M bits are all nil.
Handle decoding of permitted nop-compatible hints (i.e. nop, yield, wfi, wfe,
sev) in DecodeT2CPSInstruction.
This commit adds a proper diagnostic message for Imm0_4 and updates all tests.
Patch by Mihail Popa <Mihail.Popa@arm.com>.
llvm-svn: 180617
The reference manual defines only 5 permitted values for the immediate field of the "hint" instruction:
1. nop (imm == 0)
2. yield (imm == 1)
3. wfe (imm == 2)
4. wfi (imm == 3)
5. sev (imm == 4)
Therefore, restrict the permitted values for the "hint" instruction to 0 through 4.
Patch by Mihail Popa <Mihail.Popa@arm.com>
llvm-svn: 179707
If PC or SP is the destination, the disassembler erroneously failed with the
invalid encoding, despite the manual saying that both are fine.
This patch addresses failure to decode encoding T4 of LDR (A8.8.62) which is a
postindexed load, where the offset 0xc is applied to SP after the load occurs.
llvm-svn: 178017
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
is 24 bits not 20 and the decoding needed to correctly handle converting the
J1 and J2 bits to their I1 and I2 values to reconstruct the displacement.
llvm-svn: 166982
This patch fixes load/store instructions to handle less common cases
like "asr #32", "rrx" properly throughout the MC layer.
Patch by Chris Lidbury.
llvm-svn: 164455
Refactor the TableGen'erated fixed length disassemblmer to use a
table-driven state machine rather than a massive set of nested
switch() statements.
As a result, the ARM Disassembler (ARMDisassembler.cpp) builds much more
quickly and generates a smaller end result. For a Release+Asserts build on
a 16GB 3.4GHz i7 iMac w/ SSD:
Time to compile at -O2 (averaged w/ hot caches):
Previous: 35.5s
New: 8.9s
TEXT size:
Previous: 447,251
New: 297,661
Builds in 25% of the time previously required and generates code 66% of
the size.
Execution time of the disassembler is only slightly slower (7% disassembling
10 million ARM instructions, 19.6s vs 21.0s). The new implementation has
not yet been tuned, however, so the performance should almost certainly
be recoverable should it become a concern.
llvm-svn: 161888