Currently, there are substantial problems forming vld1_dup even if the
VDUP survives legalization. The lack of an actual node
leads to terrible results: not only can we not form post-increment vld1_dup
instructions, but we form scalar pre-increment and post-increment
loads which force the loaded value into a GPR. This patch fixes that
by combining the vdup+load into an ARMISD node before DAGCombine
messes it up.
Also includes a crash fix for vld2_dup (see testcase @vld2dupi8_postinc_variable).
Recommiting with fix to avoid forming vld1dup if the type of the load
doesn't match the type of the vdup (see
https://llvm.org/bugs/show_bug.cgi?id=31404).
Differential Revision: https://reviews.llvm.org/D27694
llvm-svn: 289972
atomic_load_add returns the value before addition, but sets EFLAGS based on the
result of the addition. That means it's setting the flags based on effectively
subtracting C from the value at x, which is also what the outer cmp does.
This targets a pattern that occurs frequently with reference counting pointers:
void decrement(long volatile *ptr) {
if (_InterlockedDecrement(ptr) == 0)
release();
}
Clang would previously compile it (for 32-bit at -Os) as:
00000000 <?decrement@@YAXPCJ@Z>:
0: 8b 44 24 04 mov 0x4(%esp),%eax
4: 31 c9 xor %ecx,%ecx
6: 49 dec %ecx
7: f0 0f c1 08 lock xadd %ecx,(%eax)
b: 83 f9 01 cmp $0x1,%ecx
e: 0f 84 00 00 00 00 je 14 <?decrement@@YAXPCJ@Z+0x14>
14: c3 ret
and with this patch it becomes:
00000000 <?decrement@@YAXPCJ@Z>:
0: 8b 44 24 04 mov 0x4(%esp),%eax
4: f0 ff 08 lock decl (%eax)
7: 0f 84 00 00 00 00 je d <?decrement@@YAXPCJ@Z+0xd>
d: c3 ret
(Equivalent variants with _InterlockedExchangeAdd, std::atomic<>'s fetch_add
or pre-decrement operator generate the same code.)
Differential Revision: https://reviews.llvm.org/D27781
llvm-svn: 289955
Add the minimal support necessary to select a function that returns the sum of
two i32 values.
This includes some support for argument/return lowering of i32 values through
registers, as well as the handling of copy and add instructions throughout the
GlobalISel pipeline.
Differential Revision: https://reviews.llvm.org/D26677
llvm-svn: 289940
Add two public methods to ARMTargetLowering: CCAssignFnForCall and
CCAssignFnForReturn, which are just calling the already existing private method
CCAssignFnForNode. These will come in handy for GlobalISel on ARM.
We also replace all calls to CCAssignFnForNode in ARMISelLowering.cpp, because
the new methods are friendlier to the reader.
llvm-svn: 289932
This patch appears to result in trampolines in vtables being miscompiled
when they in turn tail call a method.
I've posted some preliminary details about the failure on the thread for
this commit and talked to Hal. He was comfortable going ahead and
reverting until we sort out what is wrong.
llvm-svn: 289928
MachineLegalizer used to be the name of both the class and the member,
causing GCC errors. r276522 fixed that by renaming the member to just
'Legalizer'. The 'class' workaround isn't necessary anymore; drop it.
llvm-svn: 289848
This patch checks that the SlowMisaligned128Store subtarget feature is set
when penalizing such stores in getMemoryOpCost.
Differential Revision: https://reviews.llvm.org/D27677
llvm-svn: 289845
This is a tiny patch with a big pile of test changes.
This partially fixes PR27885:
https://llvm.org/bugs/show_bug.cgi?id=27885
My motivating case looks like this:
- vpshufd {{.*#+}} xmm1 = xmm1[0,1,0,2]
- vpshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
- vpblendw {{.*#+}} xmm0 = xmm0[0,1,2,3],xmm1[4,5,6,7]
+ vshufps {{.*#+}} xmm0 = xmm0[0,2],xmm1[0,2]
And this happens several times in the diffs. For chips with domain-crossing penalties,
the instruction count and size reduction should usually overcome any potential
domain-crossing penalty due to using an FP op in a sequence of int ops. For chips such
as recent Intel big cores and Atom, there is no domain-crossing penalty for shufps, so
using shufps is a pure win.
So the test case diffs all appear to be improvements except one test in
vector-shuffle-combining.ll where we miss an opportunity to use a shift to generate
zero elements and one test in combine-sra.ll where multiple uses prevent the expected
shuffle combining.
Differential Revision: https://reviews.llvm.org/D27692
llvm-svn: 289837
Move the check for the code model into isGlobalInSmallSectionImpl and return false (not in small section) for variables placed in sections prefixed with .ldata (workaround for a tool limitation).
llvm-svn: 289832
Add the missing domain equivalences for movss, movsd, movd and movq zero extending loading instructions.
Differential Revision: https://reviews.llvm.org/D27684
llvm-svn: 289825
Specifically avoid implicit conversions from/to integral types to
avoid potential errors when changing the underlying type. For example,
a typical initialization of a "full" mask was "LaneMask = ~0u", which
would result in a value of 0x00000000FFFFFFFF if the type was extended
to uint64_t.
Differential Revision: https://reviews.llvm.org/D27454
llvm-svn: 289820
In some situations, the BUILD_VECTOR node that builds a v18i8 vector by
a splat of an i8 constant will end up with signed 8-bit values and other
situations, it'll end up with unsigned ones. Handle both situations.
Fixes PR31340.
llvm-svn: 289804
This is essentially a recommit of r285893, but with a correctness fix. The
problem of the original commit was that this:
bic r5, r7, #31
cbz r5, .LBB2_10
got rewritten into:
lsrs r5, r7, #5
beq .LBB2_10
The result in destination register r5 is not the same and this is incorrect
when r5 is not dead. So this fix includes checking the uses of the AND
destination register. And also, compared to the original commit, some regression
tests didn't need changing anymore because of this extra check.
For completeness, this was the original commit message:
For the common pattern (CMPZ (AND x, #bitmask), #0), we can do some more
efficient instruction selection if the bitmask is one consecutive sequence of
set bits (32 - clz(bm) - ctz(bm) == popcount(bm)).
1) If the bitmask touches the LSB, then we can remove all the upper bits and
set the flags by doing one LSLS.
2) If the bitmask touches the MSB, then we can remove all the lower bits and
set the flags with one LSRS.
3) If the bitmask has popcount == 1 (only one set bit), we can shift that bit
into the sign bit with one LSLS and change the condition query from NE/EQ to
MI/PL (we could also implement this by shifting into the carry bit and
branching on BCC/BCS).
4) Otherwise, we can emit a sequence of LSLS+LSRS to remove the upper and lower
zero bits of the mask.
1-3 require only one 16-bit instruction and can elide the CMP. 4 requires two
16-bit instructions but can elide the CMP and doesn't require materializing a
complex immediate, so is also a win.
Differential Revision: https://reviews.llvm.org/D27761
llvm-svn: 289794
This implements execute-only support for ARM code generation, which
prevents the compiler from generating data accesses to code sections.
The following changes are involved:
* Add the CodeGen option "-arm-execute-only" to the ARM code generator.
* Add the clang flag "-mexecute-only" as well as the GCC-compatible
alias "-mpure-code" to enable this option.
* When enabled, literal pools are replaced with MOVW/MOVT instructions,
with VMOV used in addition for floating-point literals. As the MOVT
instruction is required, execute-only support is only available in
Thumb mode for targets supporting ARMv8-M baseline or Thumb2.
* Jump tables are placed in data sections when in execute-only mode.
* The execute-only text section is assigned section ID 0, and is
marked as unreadable with the SHF_ARM_PURECODE flag with symbol 'y'.
This also overrides selection of ELF sections for globals.
llvm-svn: 289784
Most of the PowerPC64 code generation for the ELF ABI is already PIC.
There are four main exceptions:
(1) Constant pointer arrays etc. should in writeable sections.
(2) The TOC restoration NOP after a call is needed for all global
symbols. While GNU ld has a workaround for questionable GCC self-calls,
we trigger the checks for calls from COMDAT sections as they cross input
sections and are therefore not considered self-calls. The current
decision is questionable and suboptimal, but outside the scope of the
change.
(3) TLS access can not use the initial-exec model.
(4) Jump tables should use relative addresses. Note that the current
encoding doesn't work for the large code model, but it is more compact
than the default for any non-trivial jump table. Improving this is again
beyond the scope of this change.
At least (1) and (3) are assumptions made in target-independent code and
introducing additional hooks is a bit messy. Testing with clang shows
that a -fPIC binary is 600KB smaller than the corresponding -fno-pic
build. Separate testing from improved jump table encodings would explain
only about 100KB or so. The rest is expected to be a result of more
aggressive immediate forming for -fno-pic, where the -fPIC binary just
uses TOC entries.
This change brings the LLVM output in line with the GCC output, other
PPC64 compilers like XLC on AIX are known to produce PIC by default
as well. The relocation model can still be provided explicitly, i.e.
when using MCJIT.
One test case for case (1) is included, other test cases with relocation
mode sensitive behavior are wired to static for now. They will be
reviewed and adjusted separately.
Differential Revision: https://reviews.llvm.org/D26566
llvm-svn: 289743
I've chosen to remove NVPTXInstrInfo::CanTailMerge but not
NVPTXInstrInfo::isLoadInstr and isStoreInstr (which are also dead)
because while the latter two are reasonably useful utilities, the former
cannot be used safely: It relies on successful address space inference
to identify writes to shared memory, but addrspace inference is a
best-effort thing.
llvm-svn: 289740
Summary:
Previously they were defined as a 2D char array in a header file. This
is kind of overkill -- we can let the linker lay out these strings
however it pleases. While we're at it, we might as well just inline
these constants where they're used, as each of them is used only once.
Also move NVPTXUtilities.{h,cpp} into namespace llvm.
Reviewers: tra
Subscribers: jholewinski, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D27636
llvm-svn: 289728
Given that INSERT_VECTOR_ELT operates on D registers anyway, combining
64-bit vectors into a 128-bit vector is basically free. Therefore, try
to split BUILD_VECTOR nodes before giving up and lowering them to a series
of INSERT_VECTOR_ELT instructions. Sometimes this allows dramatically
better lowerings; see testcases for examples. Inspired by similar code
in the x86 backend for AVX.
Differential Revision: https://reviews.llvm.org/D27624
llvm-svn: 289706
Currently, there are substantial problems forming vld1_dup even if the
VDUP survives legalization. The lack of an actual node
leads to terrible results: not only can we not form post-increment vld1_dup
instructions, but we form scalar pre-increment and post-increment
loads which force the loaded value into a GPR. This patch fixes that
by combining the vdup+load into an ARMISD node before DAGCombine
messes it up.
Also includes a crash fix for vld2_dup (see testcase @vld2dupi8_postinc_variable).
Differential Revision: https://reviews.llvm.org/D27694
llvm-svn: 289703
Since SGPRs should spill to VGPRs, they should be allocated first.
I don't think this is sufficient for SGPRs to always spill to
VGPRs though.
llvm-svn: 289671