These functions were local to SemaDeclAttr.cpp, but these functions are
useful in general (for instance, for statement or type attribute
processing). This refactoring is in advance of beginning to tablegen
diagnostic checks for statement attributes the way we already do for
declaration attributes.
There is one functional change in here as a drive-by. The
external_source_symbol attribute had one of its diagnostic checks
inside of an assert, which was corrected.
This is the first patch supporting M68k in Clang
- Register M68k as a target
- Target specific CodeGen support
- Target specific attribute support
Authors: myhsu, m4yers, glaubitz
Differential Revision: https://reviews.llvm.org/D88393
The swift_bridge attribute warns when the attribute is applied multiple
times to the same declaration. However, it warns about the arguments
being different to the attribute without ever checking if the arguments
actually are different. If the arguments are different, diagnose,
otherwise silently accept the code. Either way, drop the duplicated
attribute.
This patch implements codegen for __managed__ variable attribute for HIP.
Diagnostics will be added later.
Differential Revision: https://reviews.llvm.org/D94814
Introduce a function attribute 'enforce_tcb' that prevents the function
from calling other functions without the same attribute. This allows
isolating code that's considered to be somehow privileged so that it could not
use its privileges to exhibit arbitrary behavior.
Introduce an on-by-default warning '-Wtcb-enforcement' that warns
about violations of the above rule.
Introduce a function attribute 'enforce_tcb_leaf' that suppresses
the new warning within the function it is attached to. Such leaf functions
may implement common functionality between the trusted and the untrusted code
but they require extra careful audit with respect to their capabilities.
Fixes after a revert in 419ef38a50293c58078f830517f5e305068dbee6:
Fix a test.
Add workaround for GCC bug (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67274).
Attribute the patch appropriately!
Differential Revision: https://reviews.llvm.org/D91898
Introduce a function attribute 'enforce_tcb' that prevents the function
from calling other functions without the same attribute. This allows
isolating code that's considered to be somehow privileged so that it could not
use its privileges to exhibit arbitrary behavior.
Introduce an on-by-default warning '-Wtcb-enforcement' that warns
about violations of the above rule.
Introduce a function attribute 'enforce_tcb_leaf' that suppresses
the new warning within the function it is attached to. Such leaf functions
may implement common functionality between the trusted and the untrusted code
but they require extra careful audit with respect to their capabilities.
Differential Revision: https://reviews.llvm.org/D91898
This commit introduces a new attribute `called_once`.
It can be applied to function-like parameters to signify that
this parameter should be called exactly once. This concept
is particularly widespread in asynchronous programs.
Additionally, this commit introduce a new group of dataflow
analysis-based warnings to check this property. It identifies
and reports the following situations:
* parameter is called twice
* parameter is never called
* parameter is not called on one of the paths
Current implementation can also automatically infer `called_once`
attribute for completion handler paramaters that should follow the
same principle by convention. This behavior is OFF by default and
can be turned on by using `-Wcompletion-handler`.
Differential Revision: https://reviews.llvm.org/D92039
rdar://72812043
If two variables are declared with __attribute__((section(name))) and
the implicit section types (e.g. read only vs writeable) conflict, an
error is raised. Extend this mechanism so that an error is raised if the
section type implied by a function's __attribute__((section)) conflicts
with that of another variable.
The `assume` attribute is a way to provide additional, arbitrary
information to the optimizer. For now, assumptions are restricted to
strings which will be accumulated for a function and emitted as comma
separated string function attribute. The key of the LLVM-IR function
attribute is `llvm.assume`. Similar to `llvm.assume` and
`__builtin_assume`, the `assume` attribute provides a user defined
assumption to the compiler.
A follow up patch will introduce an LLVM-core API to query the
assumptions attached to a function. We also expect to add more options,
e.g., expression arguments, to the `assume` attribute later on.
The `omp [begin] asssumes` pragma will leverage this attribute and
expose the functionality in the absence of OpenMP.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D91979
This attribute permits a typedef to be associated with a class template
specialization as a preferred way of naming that class template
specialization. This permits us to specify that (for example) the
preferred way to express 'std::basic_string<char>' is as 'std::string'.
The attribute is applied to the various class templates in libc++ that have
corresponding well-known typedef names.
This is a re-commit. The previous commit was reverted because it exposed
a pre-existing bug that has since been fixed / worked around; see
PR48434.
Differential Revision: https://reviews.llvm.org/D91311
This change exposed a pre-existing issue with deserialization cycles
caused by a combination of attributes and template instantiations
violating the deserialization ordering restrictions; see PR48434 for
details.
A previous commit attempted to work around PR48434, but appears to have
only been a partial fix, and fixing this properly seems non-trivial.
Backing out for now to unblock things.
This reverts commit 98f76adf4e and
commit a64c26a47a.
This attributes specifies how (or if) a given function or method will be
imported into a swift async method. rdar://70111252
Differential revision: https://reviews.llvm.org/D92742
This attribute permits a typedef to be associated with a class template
specialization as a preferred way of naming that class template
specialization. This permits us to specify that (for example) the
preferred way to express 'std::basic_string<char>' is as 'std::string'.
The attribute is applied to the various class templates in libc++ that have
corresponding well-known typedef names.
Differential Revision: https://reviews.llvm.org/D91311
The swift_async_name attribute provides a name for a function/method that can be used
to call the async overload of this method from Swift. This name specified in this attribute
assumes that the last parameter in the function/method its applied to is removed when
Swift invokes it, as the the Swift's await/async transformation implicitly constructs the callback.
Differential Revision: https://reviews.llvm.org/D92355
The swift_attr attribute is a generic annotation attribute that's not used by clang,
but is used by the Swift compiler. The Swift compiler can use these annotations to provide
various syntactic and semantic sugars for the imported Objective-C API declarations.
Differential Revision: https://reviews.llvm.org/D92354
Similar to Windows Itanium, PS4 is also an Itanium C++ ABI variant
which shares the goal of semantic compatibility with Microsoft C++
code that uses dllimport/export.
This change introduces a new function to determine from the triple
if an environment aims for compatibility with MS C++ code w.r.t to
these attributes and guards the relevant code paths using that
function.
Differential Revision: https://reviews.llvm.org/D90299
This allows using annotation in a much more contexts than it currently has.
especially when annotation with template or constexpr.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D88645
folding to not constant folding.
Constant folding of ICEs is done as a GCC compatibility measure, but new
code was picking it up, presumably by accident, due to the bad default.
While here, also switch the flag from a bool to an enum to make it more
obvious what it means at call sites. This highlighted a couple of places
where our behavior is different between C++11 and C++14 due to switching
from checking for an ICE to checking for a converted constant
expression (where there is no 'fold' codepath).
Summary:
Motivated by the new objc_direct attribute, this change adds a new
attribute that remotes metadata from Protocols that the programmer knows
isn't going to be used at runtime. We simply have the frontend skip
generating any protocol metadata entries (e.g. OBJC_CLASS_NAME,
_OBJC_$_PROTOCOL_INSTANCE_METHDOS, _OBJC_PROTOCOL, etc) for a protocol
marked with `__attribute__((objc_non_runtime_protocol))`.
There are a few APIs used to retrieve a protocol at runtime.
`@protocol(SomeProtocol)` will now error out of the requested protocol
is marked with attribute. `objc_getProtocol` will return `NULL` which
is consistent with the behavior of a non-existing protocol.
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D75574
This attribute allows declarations to be restricted to the framework
itself, enabling Swift to remove the declarations when importing
libraries. This is useful in the case that the functions can be
implemented in a more natural way for Swift.
This is based on the work of the original changes in
8afaf3aad2
Differential Revision: https://reviews.llvm.org/D87720
Reviewed By: Aaron Ballman
This code never actually did anything in the implementation.
`mergeDeclAttribute` is declared as `static`, and referenced exactly
once in the file: from `Sema::mergeDeclAttributes`.
`Sema::mergeDeclAttributes` sets `LocalAMK` to `AMK_None`. If the
attribute is `DeprecatedAttr`, `UnavailableAttr`, or `AvailabilityAttr`
then the `LocalAMK` is updated. However, because we are dealing with a
`SwiftNameDeclAttr` here, `LocalAMK` remains `AMK_None`. This is then
passed to the function which will as a result pass the value of
`AMK_None == AMK_Override` aka `false`. Simply propagate the value
through and erase the dead codepath.
Thanks to Aaron Ballman for flagging the use of the availability merge
kind here leading to this simplification!
Differential Revision: https://reviews.llvm.org/D88263
Reviewed By: Aaron Ballman
Add the `swift_newtype` attribute which allows a type definition to be
imported into Swift as a new type. The imported type must be either an
enumerated type (enum) or an object type (struct).
This is based on the work of the original changes in
8afaf3aad2
Differential Revision: https://reviews.llvm.org/D87652
Reviewed By: Aaron Ballman
Sema::DiagnoseSwiftName uses the constant 12 instead of the
corresponding enumerator ExpectedFunctionWithProtoType. This is
fragile and will fail if a new value gets added in the middle of the
enum.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D88164
This introduces the new `swift_name` attribute that allows annotating
APIs with an alternate spelling for Swift. This is used as part of the
importing mechanism to allow interfaces to be imported with a new name
into Swift. It takes a parameter which is the Swift function name.
This parameter is validated to check if it matches the possible
transformed signature in Swift.
This is based on the work of the original changes in
8afaf3aad2
Differential Revision: https://reviews.llvm.org/D87534
Reviewed By: Aaron Ballman, Dmitri Gribenko
This extends semantic analysis of attributes for Swift interoperability
by introducing the `swift_bridge` attribute. This attribute enables
bridging Objective-C types to Swift specific types.
This is based on the work of the original changes in
8afaf3aad2
Differential Revision: https://reviews.llvm.org/D87532
Reviewed By: Aaron Ballman
Extend the semantic attributes that clang processes for Swift to include
`swift_bridged_typedef`. This attribute enables typedefs to be bridged
into Swift with a bridged name.
This is based on the work of the original changes in
8afaf3aad2
Differential Revision: https://reviews.llvm.org/D87396
Reviewed By: Aaron Ballman
This adds the `__swift_objc_members__` attribute to the semantic
analysis. It allows for annotating ObjC interfaces to provide Swift
semantics indicating that the types derived from this interface will be
back-bridged to Objective-C to allow interoperability with Objective-C
and Swift.
This is based on the work of the original changes in
8afaf3aad2
Differential Revision: https://reviews.llvm.org/D87395
Reviewed By: Aaron Ballman, Dmitri Gribenko
Introduce a new attribute that is used to indicate the error handling
convention used by a function. This is used to translate the error
semantics from the decorated interface to a compatible Swift interface.
The supported error convention is one of:
- none: no error handling
- nonnull_error: a non-null error parameter indicates an error signifier
- null_result: a return value of NULL is an error signifier
- zero_result: a return value of 0 is an error signifier
- nonzero_result: a non-zero return value is an error signifier
Since this is the first of the attributes needed to support the semantic
annotation for Swift, this change also includes the necessary supporting
infrastructure for a new category of attributes (Swift).
This is based on the work of the original changes in
8afaf3aad2
Differential Revision: https://reviews.llvm.org/D87331
Reviewed By: John McCall, Aaron Ballman, Dmitri Gribenko