Currently, bpf does not specify 128bit alignment in its
layout spec. So for a structure like
struct ipv6_key_t {
unsigned pid;
unsigned __int128 saddr;
unsigned short lport;
};
clang will generate IR type
%struct.ipv6_key_t = type { i32, [12 x i8], i128, i16, [14 x i8] }
Additional padding is to ensure later IR->MIR can generate correct
stack layout with target layout spec.
But it is common practice for a tracing program to be
first compiled with target flag (e.g., x86_64 or aarch64) through
clang to generate IR and then go through llc to generate bpf
byte code. Tracing program often refers to kernel internal
data structures which needs to be compiled with non-bpf target.
But such a compilation model may cause a problem on aarch64.
The bcc issue https://github.com/iovisor/bcc/issues/2827
reported such a problem.
For the above structure, since aarch64 has "i128:128" in its
layout string, the generated IR will have
%struct.ipv6_key_t = type { i32, i128, i16 }
Since bpf does not have "i128:128" in its spec string,
the selectionDAG assumes alignment 8 for i128 and
computes the stack storage size for the above is 32 bytes,
which leads incorrect code later.
The x86_64 does not have this issue as it does not have
"i128:128" in its layout spec as it does permits i128 to
be alignmented at 8 bytes at stack. Its IR type looks like
%struct.ipv6_key_t = type { i32, [12 x i8], i128, i16, [14 x i8] }
The fix here is add i128 support in layout spec, the same as
aarch64. The only downside is we may have less optimal stack
allocation in certain cases since we require 16byte alignment
for i128 instead of 8. But this is probably fine as i128 is
not used widely and in most cases users should already
have proper alignment.
Differential Revision: https://reviews.llvm.org/D76587
When specifying -march=arch[8|9|10], those CPU types do NOT support
the vector extension. In this case the vector ABI must be disabled.
The generated data layout should NOT contain 64-v128.
Reviewers: uweigand
Differential Revision: https://reviews.llvm.org/D74146
The recently announced IBM z15 processor implements the architecture
already supported as "arch13" in LLVM. This patch adds support for
"z15" as an alternate architecture name for arch13.
Corrsponding LLVM support was committed as rev. 372435.
llvm-svn: 372436
This patch series adds support for the next-generation arch13
CPU architecture to the SystemZ backend.
This includes:
- Basic support for the new processor and its features.
- Support for low-level builtins mapped to new LLVM intrinsics.
- New high-level intrinsics in vecintrin.h.
- Indicate support by defining __VEC__ == 10303.
Note: No currently available Z system supports the arch13
architecture. Once new systems become available, the
official system name will be added as supported -march name.
llvm-svn: 365933
Use this feature to fix a bug on ARM where 4 byte alignment is
incorrectly assumed.
Differential Revision: https://reviews.llvm.org/D57335
llvm-svn: 355685
Use this feature to fix a bug on ARM where 4 byte alignment is
incorrectly assumed.
Differential Revision: https://reviews.llvm.org/D57335
llvm-svn: 355585
Use this feature to fix a bug on ARM where 4 byte alignment is
incorrectly assumed.
Differential Revision: https://reviews.llvm.org/D57335
llvm-svn: 355522
This change adds support for the following MIPS target triples:
mipsisa32r6-linux-gnu
mipsisa32r6el-linux-gnu
mipsisa64r6-linux-gnuabi64
mipsisa64r6el-linux-gnuabi64
mipsisa64r6-linux-gnuabin32
mipsisa64r6el-linux-gnuabin32
Patch by Yun Qiang Su.
Differential revision: https://reviews.llvm.org/D50850
llvm-svn: 344608
The `GNUABIN32` environment in a target triple implies using the N32
ABI. This patch adds support for this environment and switches on N32
ABI if necessary.
Patch by Patch by YunQiang Su.
Differential revision: https://reviews.llvm.org/D51464
llvm-svn: 344570
This patch removes uses of the Darwin ABI for PowerPC related test cases. This
is the first step in removing Darwin support from the POWER backend.
clang/test/CodeGen/darwin-ppc-varargs.c was deleted because it was a darwin/ppc
specific test case.
All other tests were updated to remove the darwin/ppc specific invocation.
Phabricator Review: https://reviews.llvm.org/D50989.
llvm-svn: 340770
The patch adds support of i128 params lowering. The changes are quite trivial to
support i128 as a "special case" of integer type. With this patch, we lower i128
params the same way as aggregates of size 16 bytes: .param .b8 _ [16].
Currently, NVPTX can't deal with the 128 bit integers:
* in some cases because of failed assertions like
ValVTs.size() == OutVals.size() && "Bad return value decomposition"
* in other cases emitting PTX with .i128 or .u128 types (which are not valid [1])
[1] http://docs.nvidia.com/cuda/parallel-thread-execution/index.html#fundamental-types
Differential Revision: https://reviews.llvm.org/D34555
Patch by: Denys Zariaiev (denys.zariaiev@gmail.com)
llvm-svn: 308675
This patch series adds support for the IBM z14 processor. This part includes:
- Basic support for the new processor and its features.
- Support for low-level builtins mapped to new LLVM intrinsics.
Support for the -fzvector extension to vector float and the new
high-level vector intrinsics is provided by separate patches.
llvm-svn: 308197
Summary:
Change data layout string so it would be compatible with MSP430 EABI.
Depends on D34561
Reviewers: asl, awygle
Reviewed By: asl
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D34562
llvm-svn: 306161
until we can get better TargetMachine::isCompatibleDataLayout to compare - otherwise
we can't code generate existing bitcode without a string equality data layout.
This reverts commit r294703.
llvm-svn: 294708
For other platforms we should find out what they need and likely
make the same change, however, a smaller additional change is easier
for platforms we know have it specified in the ABI.
clang support for r294702
llvm-svn: 294703
For compatibility with other compilers on the platform, allow specifying
levels of the z/Architecture instead of model names with -march. In
particular, the following aliases are now supported:
-march=arch8 equals -march=z10
-march=arch9 equals -march=z196
-march=arch10 equals -march=zEC12
-march=arch11 equals -march=z13
This parallels the equivalent (and prerequisite) LLVM change in r285577.
llvm-svn: 285578
Summary:
N32 and N64 follow the standard ELF conventions (.L) whereas O32 uses its own
($).
This fixes the majority of object differences between -fintegrated-as and
-fno-integrated-as.
Reviewers: sdardis
Subscribers: dsanders, sdardis, llvm-commits
Differential Revision: https://reviews.llvm.org/D22412
llvm-svn: 275967
The DataLayout can calculate alignment of vectors based on the alignment
of the element type and the number of elements. In fact, it is the product
of these two values. The problem is that for vectors of N x i1, this will
return the alignment of N bytes, since the alignment of i1 is 8 bits. The
vector types of vNi1 should be aligned to N bits instead. Provide explicit
alignment for HVX vectors to avoid such complications.
llvm-svn: 260680
- Removed support for hexagonv3 and earlier.
- Added handling of hexagonv55 and hexagonv60.
- Added handling of target features (hvx, hvx-double).
- Updated paths to reflect current directory layout.
llvm-svn: 255502
This implements basic support for compiling (though not yet assembling
or linking) for a WebAssembly target. Note that ABI details are not yet
finalized, and may change.
Differential Revision: http://reviews.llvm.org/D12002
llvm-svn: 246814
This patch adds support for the z13 architecture type. For compatibility
with GCC, a pair of options -mvx / -mno-vx can be used to selectively
enable/disable use of the vector facility.
When the vector facility is present, we default to the new vector ABI.
This is characterized by two major differences:
- Vector types are passed/returned in vector registers
(except for unnamed arguments of a variable-argument list function).
- Vector types are at most 8-byte aligned.
The reason for the choice of 8-byte vector alignment is that the hardware
is able to efficiently load vectors at 8-byte alignment, and the ABI only
guarantees 8-byte alignment of the stack pointer, so requiring any higher
alignment for vectors would require dynamic stack re-alignment code.
However, for compatibility with old code that may use vector types, when
*not* using the vector facility, the old alignment rules (vector types
are naturally aligned) remain in use.
These alignment rules are not only implemented at the C language level,
but also at the LLVM IR level. This is done by selecting a different
DataLayout string depending on whether the vector ABI is in effect or not.
Based on a patch by Richard Sandiford.
llvm-svn: 236531
Add Tool and ToolChain support for clang to target the NaCl OS using the NaCl
SDK for x86-32, x86-64 and ARM.
Includes nacltools::Assemble and Link which are derived from gnutools. They
are similar to Linux but different enought that they warrant their own class.
Also includes a NaCl_TC in ToolChains derived from Generic_ELF with library
and include paths suitable for an SDK and independent of the system tools.
Differential Revision: http://reviews.llvm.org/D8590
llvm-svn: 233594