This is also useful in cases when llvm is in a shared library. First we dlopen
the llvm shared library and then we register it as a permanent library in order
to keep the JIT and other services working.
Patch reviewed by Vedant Kumar (D29955)!
llvm-svn: 296442
Summary:
With this change ImplicitNullCheck optimization uses alias analysis
and can use load/store memory access for implicit null check if there
are other load/store before but memory accesses do not alias.
Patch by Serguei Katkov!
Reviewers: sanjoy
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30331
llvm-svn: 296440
This is a patch for the outliner described in the RFC at:
http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
The outliner is a code-size reduction pass which works by finding
repeated sequences of instructions in a program, and replacing them with
calls to functions. This is useful to people working in low-memory
environments, where sacrificing performance for space is acceptable.
This adds an interprocedural outliner directly before printing assembly.
For reference on how this would work, this patch also includes X86
target hooks and an X86 test.
The outliner is run like so:
clang -mno-red-zone -mllvm -enable-machine-outliner file.c
Patch by Jessica Paquette<jpaquette@apple.com>!
rdar://29166825
Differential Revision: https://reviews.llvm.org/D26872
llvm-svn: 296418
Splitting critical edges when one of the source edges is an indirectbr
is hard in general (because it requires changing the memory the indirectbr
reads). But if a block only has a single indirectbr predecessor (which is
the common case), we can simulate splitting that edge by splitting
the destination block, and retargeting the *direct* branches.
This is motivated by the use of computed gotos in python 2.7: PyEval_EvalFrame()
ends up using an indirect branch with ~100 successors, and passing a constant to
each of those. Since MachineSink can't break indirect critical edges on demand
(and doing this in MIR doesn't look feasible), this causes us to emit about ~100
defs of registers containing constants, which we in the predecessor block, where
only one of those constants is used in each successor. So, at each computed goto,
we needlessly spill about a 100 constants to stack. The end result is that a
clang-compiled python interpreter can be about ~2.5x slower on a simple python
reduction loop than a gcc-compiled interpreter.
Differential Revision: https://reviews.llvm.org/D29916
llvm-svn: 296416
Before the endianness was specified on each call to read
or write of the StreamReader / StreamWriter, but in practice
it's extremely rare for streams to have data encoded in
multiple different endiannesses, so we should optimize for the
99% use case.
This makes the code cleaner and more general, but otherwise
has NFC.
llvm-svn: 296415
The Fuchsia ASan runtime reserves the low part of the address space.
Patch by Roland McGrath
Differential Revision: https://reviews.llvm.org/D30426
llvm-svn: 296405
Instead of requiring every non-COFF MCObjectStreamer to implement the
COFF hooks just to do an llvm_unreachable to say that they're not
supported, do the llvm_unreachable in the default implementation, as
suggested by rnk in https://reviews.llvm.org/D26722.
llvm-svn: 296403
This was reverted because it was breaking some builds, and
because of incorrect error code usage. Since the CL was
large and contained many different things, I'm resubmitting
it in pieces.
This portion is NFC, and consists of:
1) Renaming classes to follow a consistent naming convention.
2) Fixing the const-ness of the interface methods.
3) Adding detailed doxygen comments.
4) Fixing a few instances of passing `const BinaryStream& X`. These
are now passed as `BinaryStreamRef X`.
llvm-svn: 296394
Summary: Should use the Valuekind read from the profile.
Reviewers: davidxl
Reviewed By: davidxl
Subscribers: llvm-commits, xur
Differential Revision: https://reviews.llvm.org/D30420
llvm-svn: 296391
The transform in question claims to be doing:
// fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
...starting in PerformADDCombineWithOperands(), but it wasn't actually checking for a setcc node
for the sext/zext patterns.
This is exactly the opposite of a transform I'd like to add to DAGCombiner's foldSelectOfConstants(),
so I was seeing infinite loops with my draft of a patch applied.
The changes in select_const.ll look positive (less instructions). The change in arm-and-tst-peephole.ll
is unrelated. We're changing the input IR in that test to preserve the intent of the test, but that's
not affected by this code change.
Differential Revision:
https://reviews.llvm.org/D30355
llvm-svn: 296389
DAGCombiner already supports peeking thorough shuffles to improve vector element extraction, but legalization often leaves us in situations where we need to extract vector elements after shuffles have already been lowered.
This patch adds support for VECTOR_EXTRACT_ELEMENT/PEXTRW/PEXTRB instructions to attempt to handle target shuffles as well. I've covered some basic scenarios including handling shuffle mask scaling and the implicit zero-extension of PEXTRW/PEXTRB, there is more that could be done here (that I've mentioned in TODOs) but I haven't found many cases where its worth it.
Differential Revision: https://reviews.llvm.org/D30176
llvm-svn: 296381
Summary: Existing implementation of duplicateSimpleBB function drops DebugLoc metadata of branch instructions during the transformation. This patch addresses this issue by making newly created branch instructions to keep the metadata of replaced branch instructions.
Reviewers: qcolombet, craig.topper, aprantl, MatzeB, sanjoy, dblaikie
Reviewed By: dblaikie
Subscribers: dblaikie, llvm-commits
Differential Revision: https://reviews.llvm.org/D30026
llvm-svn: 296371
This was suggested in D27855: have the inliner add assumptions, so we don't
lose nonnull info provided by argument attributes.
This still doesn't solve PR28430 (dyn_cast), but this gets us closer.
https://reviews.llvm.org/D29999
llvm-svn: 296366
Summary:
SmallBitVector uses a malloc for more than 58 bits on a 64-bit target and more than 27 bits on a 32-bit target. Some of the vector types we deal with here use more than those number of elements and therefore cause a malloc.
APInt on the other hand supports up to 64 bits without a malloc. That's the maximum number of bits we need here so we can avoid a malloc for all cases by using APInt.
Reviewers: RKSimon
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30392
llvm-svn: 296355
Summary:
SmallBitVector uses a malloc for more than 58 bits on a 64-bit target and more than 27 bits on a 32-bit target. Some of the vector types we deal with here use more than those number of elements and therefore cause a malloc.
APInt on the other hand supports up to 64 bits without a malloc. That's the maximum number of bits we need here so we can avoid a malloc for all cases by using APInt.
Reviewers: RKSimon
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30390
llvm-svn: 296354
Some of the vectors are under sized to avoid heap allocation. In one case the vector was oversized.
Differential Revision: https://reviews.llvm.org/D30387
llvm-svn: 296353
Summary:
SmallBitVector uses a malloc for more than 58 bits on a 64-bit target and more than 27 bits on a 32-bit target. Some of the vector types we deal with here use more than those number of elements and therefore cause a malloc.
APInt on the other hand supports up to 64 bits without a malloc. That's the maximum number of bits we need here so we can avoid a malloc for all cases by using APInt. This will incur a minor increase in stack usage due to APInt storing the bit count separately from the data bits unlike SmallBitVector, but that should be ok.
Reviewers: RKSimon
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30386
llvm-svn: 296352
This is a fix for a loop predication bug which resulted in malformed IR generation.
Loop invariant side of the widened condition is not guaranteed to be available in the preheader as is, so we need to expand it as well. See added unsigned_loop_0_to_n_hoist_length test for example.
Reviewed By: sanjoy, mkazantsev
Differential Revision: https://reviews.llvm.org/D30099
llvm-svn: 296345
This is a cleanup/rewrite of the printSysAlias function. This was not using the
tablegen instruction descriptions, but was "manually" decoding the
instructions. This has been replaced with calls to lookup_XYZ_ByEncoding
tablegen calls.
This revealed several problems. First, instruction IVAU had the wrong encoding.
This was cancelled out by the parser that incorrectly matched the wrong
encoding. Second, instruction CVAP was missing from the SystemOperands tablegen
descriptions, so this has been added. And third, the required target features
were not captured in the tablegen descriptions, so support for this has also
been added.
Differential Revision: https://reviews.llvm.org/D30329
llvm-svn: 296343
Currently we handle this correctly in arm, but in thumb we don't which leads to
an unpredictable instruction being emitted for LSL #0 in an IT block and SP not
being permitted in some cases when it should be.
For the thumb2 LSL we can handle this by making LSL #0 an alias of MOV in the
.td file, but for thumb1 we need to handle it in checkTargetMatchPredicate to
get the IT handling right. We also need to adjust the handling of
MOV rd, rn, LSL #0 to avoid generating the 16-bit encoding in an IT block. We
should also adjust it to allow SP in the same way that it is allowed in
MOV rd, rn, but I haven't done that here because it looks like it would take
quite a lot of work to get right.
Additionally correct the selection of the 16-bit shift instructions in
processInstruction, where it was checking if the two registers were equal when
it should have been checking if they were low. It appears that previously this
code was never executed and the 16-bit encoding was selected by default, but
the other changes I've done here have somehow made it start being used.
Differential Revision: https://reviews.llvm.org/D30294
llvm-svn: 296342
This pattern is essentially a i16 load from p+1 address:
%p1.i16 = bitcast i8* %p to i16*
%p2.i8 = getelementptr i8, i8* %p, i64 2
%v1 = load i16, i16* %p1.i16
%v2.i8 = load i8, i8* %p2.i8
%v2 = zext i8 %v2.i8 to i16
%v1.shl = shl i16 %v1, 8
%res = or i16 %v1.shl, %v2
Current implementation would identify %v1 load as the first byte load and would mistakenly emit a i16 load from %p1.i16 address. This patch adds a check that the first byte is loaded from a non-zero offset of the first load address. This way this address can be used as the base address for the combined value. Otherwise just give up combining.
llvm-svn: 296336
There are no instructions that have "[1]" as part of the assembly string;
FMOVXDhighr is out of date. This removes dead code.
Differential Revision: https://reviews.llvm.org/D30165
llvm-svn: 296327
- Verify that runtime metadata is actually valid runtime metadata when assembling, otherwise we could accept the following when assembling, but ocl runtime will reject it:
.amdgpu_runtime_metadata
{ amd.MDVersion: [ 2, 1 ], amd.RandomUnknownKey, amd.IsaInfo: ...
- Make IsaInfo optional, and always emit it.
Differential Revision: https://reviews.llvm.org/D30349
llvm-svn: 296324
Summary:
BranchInst, SwitchInst (with non-default case) with Undef as input is not
possible at this point. As we always default-fold terminator to one target in
ResolvedUndefsIn and set the input accordingly.
So we should only have constantint/blockaddress here.
If ConstantFoldTerminator fails, that could mean 2 things.
1. ConstantFoldTerminator is doing something unexpected, i.e. not folding on constantint
or blockaddress and not making blocks that should be dead dead.
2. This is not a terminator on constantint or blockaddress. Its on a constant or
overdefined, then this block should not be dead.
In both cases, we should assert.
Reviewers: davide, efriedma, sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30381
llvm-svn: 296281
Summary:
Previously we used to return a bogus result, 0, for IR like `ashr %val,
-1`.
I've also added an assert checking that `ComputeNumSignBits` at least
returns 1. That assert found an already checked in test case where we
were returning a bad result for `ashr %val, -1`.
Fixes PR32045.
Reviewers: spatel, majnemer
Reviewed By: spatel, majnemer
Subscribers: efriedma, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D30311
llvm-svn: 296273
The current pattern for extract bits in range is typically:
Mask.lshr(BitOffset).trunc(SubSizeInBits);
Which can be particularly slow for large APInts (MaskSizeInBits > 64) as they require the allocation of memory for the temporary variable.
This is another of the compile time issues identified in PR32037 (see also D30265).
This patch adds the APInt::extractBits() helper method which avoids the temporary memory allocation.
Differential Revision: https://reviews.llvm.org/D30336
llvm-svn: 296272
Summary:
While collecting operands we make copies of the LiveReg objects which are stored in the LiveRegs array. If the instruction uses the same register multiple times we end up with multiple copies. Later we iterate through the collected list of LiveReg objects and merge DomainValues. In the process of doing this the merge function can change the contents of the original LiveReg object in the LiveRegs array, but not the copies that have been made. So when we get to the second usage of the register we end up seeing a stale copy of the LiveReg object.
To fix this I've stopped copying and now just store a pointer to the original LiveReg object. Another option might be to avoid adding the same register to the Regs array twice, but this approach seemed simpler.
The included test case exposes this bug due to an AVX-512 masked OR instruction using the same register for the passthru operand and one of the inputs to the OR operation.
Fixes PR30284.
Reviewers: RKSimon, stoklund, MatzeB, spatel, myatsina
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30242
llvm-svn: 296260
r296215, "[PDB] General improvements to Stream library."
r296217, "Disable BinaryStreamTest.StreamReaderObject temporarily."
r296220, "Re-enable BinaryStreamTest.StreamReaderObject."
r296244, "[PDB] Disable some tests that are breaking bots."
r296249, "Add static_cast to silence -Wc++11-narrowing."
std::errc::no_buffer_space should be used for OS-oriented errors for socket transmission.
(Seek discussions around llvm/xray.)
I could substitute s/no_buffer_space/others/g, but I revert whole them ATM.
Could we define and use LLVM errors there?
llvm-svn: 296258
When dumping .debug_info section we loop through all attributes mentioned in
.debug_abbrev section and dump values using DWARFFormValue::extractValue().
We need to skip implicit_const attributes here as their values are not
really located in .debug_info but directly in .debug_abbrev. This patch fixes
triggered assert() in DWARFFormValue::extractValue() caused by trying to
access implicit_const values from .debug_info.
llvm-svn: 296253
Recommiting after fixup of 32-bit aliasing sign offset bug in DAGCombiner.
* Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search and chain alias analysis which only
checks for parallel stores through the chain subgraph. This is cleaner
as the separation of non-interfering loads/stores from the
store-merging logic.
When merging stores search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited.
This improves the quality of the output SelectionDAG and the output
Codegen (save perhaps for some ARM cases where we correctly constructs
wider loads, but then promotes them to float operations which appear
but requires more expensive constant generation).
Some minor peephole optimizations to deal with improved SubDAG shapes (listed below)
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the chain aggregation in the merged stores across code
paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seems sufficient to not cause regressions in
tests.
5. Remove Chain dependencies of Memory operations on CopyfromReg
nodes as these are captured by data dependence
6. Forward loads-store values through tokenfactors containing
{CopyToReg,CopyFromReg} Values.
7. Peephole to convert buildvector of extract_vector_elt to
extract_subvector if possible (see
CodeGen/AArch64/store-merge.ll)
8. Store merging for the ARM target is restricted to 32-bit as
some in some contexts invalid 64-bit operations are being
generated. This can be removed once appropriate checks are
added.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable, improving load-store forwarding. One test in
particular is worth noting:
CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store
forwarding converts a load-store pair into a parallel store and
a memory-realized bitcast of the same value. However, because we
lose the sharing of the explicit and implicit store values we
must create another local store. A similar transformation
happens before SelectionDAG as well.
Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle
llvm-svn: 296252
This adds various new functionality and cleanup surrounding the
use of the Stream library. Major changes include:
* Renaming of all classes for more consistency / meaningfulness
* Addition of some new methods for reading multiple values at once.
* Full suite of unit tests for reader / writer functionality.
* Full set of doxygen comments for all classes.
* Streams now store their own endianness.
* Fixed some bugs in a few of the classes that were discovered
by the unit tests.
llvm-svn: 296215
This is part of a larger effort to get the Stream code moved
up to Support. I don't want to do it in one large patch, in
part because the changes are so big that it will treat everything
as file deletions and add, losing history in the process.
Aside from that though, it's just a good idea in general to
make small changes.
So this change only changes the names of the Stream related
source files, and applies necessary source fix ups.
llvm-svn: 296211
Current internal option -static-func-full-module-prefix keeps all the
directory path the profile counter names for static functions. The default
of this option is false. This strips the directory names from the source
filename which is problematic:
(1) it creates linker errors for profile-generation compilation, exposed in
our internal benchmarks. We are seeing messages like
"warning: relocation refers to discarded section".
This is due to the name conflicts after the stripping.
(2) the stripping only applies to getPGOFuncName.
Current Thin-LTO module importing for the indirect-calls assumes
the source directory name not being stripped. Current default value
for this option can potentially prevent some inter-module
indirect-call-promotions.
This patch turns the default value for -static-func-full-module-prefix to true.
The second part of the patch is to have an alternative implementation under
the internal option -static-func-strip-dirname-prefix=<value>
This options specifies level of directories to be stripped from the source
filename. Using a large value as the parameter has the same effect as
-static-func-full-module-prefix.
Differential Revision: http://reviews.llvm.org/D29512
llvm-svn: 296206
With the "wasm32-unknown-unknown-wasm" triple, this allows writing out
simple wasm object files, and is another step in a larger series toward
migrating from ELF to general wasm object support. Note that this code
and the binary format itself is still experimental.
llvm-svn: 296190
This reverts commit r296009. It broke one out of tree target and also
does not account for all partial lines added or removed when calculating
PressureDiff.
llvm-svn: 296182
All G_CONSTANTS created by the MachineIRBuilder have an operand of type CImm
(i.e. a ConstantInt), so that's what the selector needs to look for.
llvm-svn: 296176
When we construct addressing modes, we use isNoopAddrSpaceCast to ignore
addrspacecast instructions. Make sure we insert the correct addrspacecast
when we reconstruct the addressing mode.
Differential Revision: https://reviews.llvm.org/D30114
llvm-svn: 296167
This optimisation was crashing when there was a chain of more than one bitcast
instruction to replace, as a result of the changes in D27283.
Patch by James Price.
Differential Revision: https://reviews.llvm.org/D30347
llvm-svn: 296163
Splitting critical edges when one of the source edges is an indirectbr
is hard in general (because it requires changing the memory the indirectbr
reads). But if a block only has a single indirectbr predecessor (which is
the common case), we can simulate splitting that edge by splitting
the destination block, and retargeting the *direct* branches.
This is motivated by the use of computed gotos in python 2.7: PyEval_EvalFrame()
ends up using an indirect branch with ~100 successors, and passing a constant to
each of those. Since MachineSink can't break indirect critical edges on demand
(and doing this in MIR doesn't look feasible), this causes us to emit about ~100
defs of registers containing constants, which we in the predecessor block, where
only one of those constants is used in each successor. So, at each computed goto,
we needlessly spill about a 100 constants to stack. The end result is that a
clang-compiled python interpreter can be about ~2.5x slower on a simple python
reduction loop than a gcc-compiled interpreter.
Differential Revision: https://reviews.llvm.org/D29916
llvm-svn: 296149
The current pattern for extract bits in range is typically:
Mask.lshr(BitOffset).trunc(SubSizeInBits);
Which can be particularly slow for large APInts (MaskSizeInBits > 64) as they require the allocation of memory for the temporary variable.
This is another of the compile time issues identified in PR32037 (see also D30265).
This patch adds the APInt::extractBits() helper method which avoids the temporary memory allocation.
Differential Revision: https://reviews.llvm.org/D30336
llvm-svn: 296147
This patch merges the existing floating-point induction variable widening code
into the integer induction variable widening code, creating a single set of
functions for both kinds of inductions. The primary motivation for doing this
is to enable vector phi node creation for floating-point induction variables.
Differential Revision: https://reviews.llvm.org/D30211
llvm-svn: 296145
Provide a 64-bit pattern to use SUBFIC for subtracting from a 16-bit immediate.
The corresponding pattern already exists for 32-bit integers.
Committing on behalf of Hiroshi Inoue.
Differential Revision: https://reviews.llvm.org/D29387
llvm-svn: 296144
Emit clrrdi (extended mnemonic for rldicr) for AND-ing with masks that
clear bits from the right hand size.
Committing on behalf of Hiroshi Inoue.
Differential Revision: https://reviews.llvm.org/D29388
llvm-svn: 296143
The current pattern for extract bits in range is typically:
Mask.lshr(BitOffset).trunc(SubSizeInBits);
Which can be particularly slow for large APInts (MaskSizeInBits > 64) as they require the allocation of memory for the temporary variable.
This is another of the compile time issues identified in PR32037 (see also D30265).
This patch adds the APInt::extractBits() helper method which avoids the temporary memory allocation.
Differential Revision: https://reviews.llvm.org/D30336
llvm-svn: 296141
The motivation for filling out these select-of-constants cases goes back to D24480,
where we discussed removing an IR fold from add(zext) --> select. And that goes back to:
https://reviews.llvm.org/rL75531https://reviews.llvm.org/rL159230
The idea is that we should always canonicalize patterns like this to a select-of-constants
in IR because that's the smallest IR and the best for value tracking. Note that we currently
do the opposite in some cases (like the cases in *this* patch). Ie, the proposed folds in
this patch already exist in InstCombine today:
https://github.com/llvm-mirror/llvm/blob/master/lib/Transforms/InstCombine/InstCombineSelect.cpp#L1151
As this patch shows, most targets generate better machine code for simple ext/add/not ops
rather than a select of constants. So the follow-up steps to make this less of a patchwork
of special-case folds and missing IR canonicalization:
1. Have DAGCombiner convert any select of constants into ext/add/not ops.
2 Have InstCombine canonicalize in the other direction (create more selects).
Differential Revision: https://reviews.llvm.org/D30180
llvm-svn: 296137
This time with the missing files.
Similar to PR/25526, fast-regalloc introduces spills at the end of basic
blocks. When this occurs in between an ll and sc, the store can cause the
atomic sequence to fail.
This patch fixes the issue by introducing more pseudos to represent atomic
operations and moving their lowering to after the expansion of postRA
pseudos.
This resolves PR/32020.
Thanks to James Cowgill for reporting the issue!
Reviewers: slthakur
Differential Revision: https://reviews.llvm.org/D30257
llvm-svn: 296134
Similar to PR/25526, fast-regalloc introduces spills at the end of basic
blocks. When this occurs in between an ll and sc, the store can cause the
atomic sequence to fail.
This patch fixes the issue by introducing more pseudos to represent atomic
operations and moving their lowering to after the expansion of postRA
pseudos.
This resolves PR/32020.
Thanks to James Cowgill for reporting the issue!
Reviewers: slthakur
Differential Revision: https://reviews.llvm.org/D30257
llvm-svn: 296132
Summary:
This isn't testable for AArch64 by itself so this patch also adds
support for constant immediates in the pattern and physical
register uses in the result.
The new IntOperandMatcher matches the constant in patterns such as
'(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold
immediates into an instruction so this is the first rule that will match
across multiple BB's.
The Renderer hierarchy is responsible for adding operands to the result
instruction. Renderers can copy operands (CopyRenderer) or add physical
registers (in particular %wzr and %xzr) to the result instruction
in any order (OperandMatchers now import the operand names from
SelectionDAG to allow renderers to access any operand). This allows us to
emit the result instruction for:
%1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0
%1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0
although the latter is untested since the matcher/importer has not been
taught about commutativity yet.
Added BuildMIAction which can build new instructions and mutate them where
possible. W.r.t the mutation aspect, MatchActions are now told the name of
an instruction they can recycle and BuildMIAction will emit mutation code
when the renderers are appropriate. They are appropriate when all operands
are rendered using CopyRenderer and the indices are the same as the matcher.
This currently assumes that all operands have at least one matcher.
Finally, this change also fixes a crash in
AArch64InstructionSelector::select() caused by an immediate operand
passing isImm() rather than isCImm(). This was uncovered by the other
changes and was detected by existing tests.
Depends on D29711
Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar
Reviewed By: rovka
Subscribers: aemerson, dberris, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D29712
llvm-svn: 296131
Noticed while profiling PR32037, the target shuffle ops were being stored in SmallVector<*,8> types but the combiner could store as many as 16 ops at maximum depth (2 per depth).
llvm-svn: 296130
This one seems more obvious than D30270 that it can't make improvements because an extension always needs
all of the incoming bits. There's one specific transform in SimplifyDemandedInstructionBits of converting
a sext to a zext when the sign-bit is known zero, but that is handled explicitly in visitSext() with
ComputeSignBit().
Like D30270, there are no IR differences (other than instruction names) for the case in PR32037:
https://bugs.llvm.org//show_bug.cgi?id=32037
...and no regression test differences.
Zext/sext are a smaller part of the profile, but this still appears to shave off another 0.5% or so from
'opt -O2'.
Differential Revision: https://reviews.llvm.org/D30280
llvm-svn: 296129
Previously LLVM was assuming 32-bit signed immediates which results in and with
a bitmask that has bit 31 set to incorrectly include bits 63-32 in the result.
After applying this patch I can now compile all of the FreeBSD mips assembly
code with clang.
This issue also affects the nor, slt and sltu macros and I will fix those in a
separate review.
Patch By: Alexander Richardson
Commit message reformatted by sdardis.
Reviewers: atanasyan, theraven, sdardis
Differential Revision: https://reviews.llvm.org/D30298
llvm-svn: 296125
Make the MIPS disassembler consistent with the other targets in returning
a Size of zero when the input buffer cannot contain an instruction due
to it's size. Previously it reported the minimum instruction size when
it failed due to the buffer not being big enough for an instruction
causing llvm-objdump to crash when disassembling all sections.
Reviewers: slthakur
Differential Revision: https://reviews.llvm.org/D29984
llvm-svn: 296105
The current pattern for setting bits in range is typically:
Mask |= APInt::getBitsSet(MaskSizeInBits, LoPos, HiPos);
Which can be particularly slow for large APInts (MaskSizeInBits > 64) as they require the allocation memory for the temporary variable.
This is one of the key compile time issues identified in PR32037.
This patch adds the APInt::setBits() helper method which avoids the temporary memory allocation completely, this first implementation uses setBit() internally instead but already significantly reduces the regression in PR32037 (~10% drop). Additional optimization may be possible.
I investigated whether there is need for APInt::clearBits() and APInt::flipBits() equivalents but haven't seen these patterns to be particularly common, but reusing the code would be trivial.
Differential Revision: https://reviews.llvm.org/D30265
llvm-svn: 296102
The Fuchsia ABI defines slots from the thread pointer where the
stack-guard value for stack-protector, and the unsafe stack pointer
for safe-stack, are stored. This parallels the Android ABI support.
Patch by Roland McGrath
Differential Revision: https://reviews.llvm.org/D30237
llvm-svn: 296081
LoopUnswitch/simplify-with-nonvalness.ll is the test case for this.
The LIC has 2 users and deleting the 1st user when it can be simplified
invalidated the iterator for the 2nd user.
llvm-svn: 296069
Splitting critical edges when one of the source edges is an indirectbr
is hard in general (because it requires changing the memory the indirectbr
reads). But if a block only has a single indirectbr predecessor (which is
the common case), we can simulate splitting that edge by splitting
the destination block, and retargeting the *direct* branches.
This is motivated by the use of computed gotos in python 2.7: PyEval_EvalFrame()
ends up using an indirect branch with ~100 successors, and passing a constant to
each of those. Since MachineSink can't break indirect critical edges on demand
(and doing this in MIR doesn't look feasible), this causes us to emit about ~100
defs of registers containing constants, which we in the predecessor block, where
only one of those constants is used in each successor. So, at each computed goto,
we needlessly spill about a 100 constants to stack. The end result is that a
clang-compiled python interpreter can be about ~2.5x slower on a simple python
reduction loop than a gcc-compiled interpreter.
Differential Revision: https://reviews.llvm.org/D29916
llvm-svn: 296060
This allows the ability to call IPDBSession::getGlobalScope with a NativeSession and
to then query it for some basic fields from the PDB's InfoStream.
Note that the symbols now have non-const references back to the Session so that
NativeRawSymbol can access the PDBFile through the Session.
Differential Revision: https://reviews.llvm.org/D30314
llvm-svn: 296049
We were stopping the translation of the parent block when the
translation of an instruction failed, but we were still trying to
translate the other blocks of the parent function.
Don't do that.
llvm-svn: 296047
Summary: In case we do not know what the condition is in an unswitched loop, but we know its definitely NOT a known constant. We can perform simplifcations based on this information.
Reviewers: sanjoy, hfinkel, chenli, efriedma
Reviewed By: efriedma
Subscribers: david2050, llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D28968
llvm-svn: 296041
Summary:
The helper will be used in a later change. This change itself is NFC
since the only user of this new function is its unit test.
Reviewers: majnemer, efriedma
Reviewed By: efriedma
Subscribers: efriedma, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D30184
llvm-svn: 296035
This patch enables support for .f16x2 operations.
Added new register type Float16x2.
Added support for .f16x2 instructions.
Added handling of vectorized loads/stores of v2f16 values.
Differential Revision: https://reviews.llvm.org/D30057
Differential Revision: https://reviews.llvm.org/D30310
llvm-svn: 296032
FastISel wasn't checking the isFPOnlySP subtarget feature before emitting
double-precision operations, so it got completely invalid CodeGen for doubles
on Cortex-M4F.
The normal ISel testing wasn't spectacular either so I added a second RUN line
to improve that while I was in the area.
llvm-svn: 296031
While not CVP's fault, this caused miscompiles (PR31181). Reverting
until those are resolved.
(This also reverts the follow-ups r288154 and r288161 which removed the
flag.)
llvm-svn: 296030
Summary: SamplePGO uses branch_weight annotation to represent callsite hotness. When ICP promotes an indirect call to direct call, we need to make sure the direct call is annotated with branch_weight in SamplePGO mode, so that downstream function inliner can use hot callsite heuristic.
Reviewers: davidxl, eraman, xur
Reviewed By: davidxl, xur
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D30282
llvm-svn: 296028
In the bit tracker, references to other bit values in which the register
is 0 are prohibited. This means that generating self-referential register
cells like { w:32 [0-15]:s[0-15] [16-31]:s[15] } is impossible. In order
to get a self-referential cell, it had to be stored into a map and then
reloaded from it. To avoid this step, add a function that will set the
register to a given value without going through the map.
llvm-svn: 296025
Last use was killed in my previous patch. The preferred way is now to
construct the remark, pipe things to it and pass it to ORE.emit.
llvm-svn: 296019
Rename ComputedTrellisEdges to ComputedEdges to allow for other methods of
pre-computing edges.
Differential Revision: https://reviews.llvm.org/D30308
llvm-svn: 296018
Having more fine-grained information on the specific construct that
caused us to fallback is valuable for large-scale data collection.
We still have the fallback warning, that's also used for FastISel.
We still need to remove the fallback warning, and teach FastISel to also
emit remarks (it currently has a combination of the warning, stats, and
debug prints: the remarks could unify all three).
The abort-on-fallback path could also be better handled using remarks:
one could imagine a "-Rpass-error", analoguous to "-Werror", which would
promote missed/failed remarks to errors. It's not clear whether that
would be useful for other remarks though, so we're not there yet.
llvm-svn: 296013
If a subreg is used in an instruction it counts as a whole superreg
for the purpose of register pressure calculation. This patch corrects
improper register pressure calculation by examining operand's lane mask.
Differential Revision: https://reviews.llvm.org/D29835
llvm-svn: 296009
This reverts commit r295749 while investigating PR32042.
It looks like this check uncovered a problem in the frontend that
needs to be fixed before the check can be enabled again.
llvm-svn: 296005
In OptimizeAdd, we scan the operand list to see if there are any common factors
between operands that can be factored out to reduce the number of multiplies
(e.g., 'A*A+A*B*C+D' -> 'A*(A+B*C)+D'). For each operand of the operand list, we
only consider unique factors (which is tracked by the Duplicate set). Now if we
find a factor that is a negative constant, we add the negated value as a factor
as well, because we can percolate the negate out. However, we mistakenly don't
add this negated constant to the Duplicates set.
Consider the expression A*2*-2 + B. Obviously, nothing to factor.
For the added value A*2*-2 we over count 2 as a factor without this change,
which causes the assert reported in PR30256. The problem is that this code is
assuming that all the multiply operands of the add are already reassociated.
This change avoids the issue by making OptimizeAdd tolerate multiplies which
haven't been completely optimized; this sort of works, but we're doing wasted
work: we'll end up revisiting the add later anyway.
Another possible approach would be to enforce RPO iteration order more strongly.
If we have RedoInsts, we process them immediately in RPO order, rather than
waiting until we've finished processing the whole function. Intuitively, it
seems like the natural approach: reassociation works on expression trees, so
the optimization only works in one direction. That said, I'm not sure how
practical that is given the current Reassociate; the "optimal" form for an
expression depends on its use list (see all the uses of "user_back()"), so
Reassociate is really an iterative optimization of sorts, so any changes here
would probably get messy.
PR30256
Differential Revision: https://reviews.llvm.org/D30228
llvm-svn: 296003
Summary: The discriminator has been encoded, and only the base discriminator should be used during profile matching.
Reviewers: dblaikie, davidxl
Reviewed By: dblaikie, davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30218
llvm-svn: 295999
Since LoopInfo is not available in machine passes as universally as in IR
passes, using the same approach for OptimizationRemarkEmitter as we did for IR
will run LoopInfo and DominatorTree unnecessarily. (LoopInfo is not used
lazily by ORE.)
To fix this, I am modifying the approach I took in D29836. LazyMachineBFI now
uses its client passes including MachineBFI itself that are available or
otherwise compute them on the fly.
So for example GreedyRegAlloc, since it's already using MBFI, will reuse that
instance. On the other hand, AsmPrinter in Justin's patch will generate DT,
LI and finally BFI on the fly.
(I am of course wondering now if the simplicity of this approach is even
preferable in IR. I will do some experiments.)
Testing is provided by an updated version of D29837 which requires Justin's
patch to bring ORE to the AsmPrinter.
Differential Revision: https://reviews.llvm.org/D30128
llvm-svn: 295996
Introduce a common ValueHandler for call returns and formal arguments, and
inherit two different versions for handling the differences (at the moment the
only difference is the way physical registers are marked as used).
llvm-svn: 295973
result
Summary:
If the same value is used several times as an extra value, SLP
vectorizer takes it into account only once instead of actual number of
using.
For example:
```
int val = 1;
for (int y = 0; y < 8; y++) {
for (int x = 0; x < 8; x++) {
val = val + input[y * 8 + x] + 3;
}
}
```
We have 2 extra rguments: `1` - initial value of horizontal reduction
and `3`, which is added 8*8 times to the reduction. Before the patch we
added `1` to the reduction value and added once `3`, though it must be
added 64 times.
Reviewers: mkuper, mzolotukhin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30262
llvm-svn: 295972
Add support for lowering calls with parameters than can fit into regs. Use the
same ValueHandler that we used for function returns, but rename it to match its
new, extended purpose.
llvm-svn: 295971
This patch adjusts the most relaxed predicate of immediate operands to accept
immediate forms such as ~(0xf0000000|0x000f00000). Previously these forms
would be accepted by GAS and rejected by IAS.
This partially resolves PR/30383.
Thanks to Sean Bruno for reporting the issue!
Reviewers: slthakur, seanbruno
Differential Revision: https://reviews.llvm.org/D29218
llvm-svn: 295965
The ARMConstantIslandPass didn't have support for handling accesses to
constant island objects through ARM::t2LDRBpci instructions. This adds
support for that.
This fixes PR31997.
llvm-svn: 295964
result
Summary:
If the same value is used several times as an extra value, SLP
vectorizer takes it into account only once instead of actual number of
using.
For example:
```
int val = 1;
for (int y = 0; y < 8; y++) {
for (int x = 0; x < 8; x++) {
val = val + input[y * 8 + x] + 3;
}
}
```
We have 2 extra rguments: `1` - initial value of horizontal reduction
and `3`, which is added 8*8 times to the reduction. Before the patch we
added `1` to the reduction value and added once `3`, though it must be
added 64 times.
Reviewers: mkuper, mzolotukhin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30262
llvm-svn: 295956
result
Summary:
If the same value is used several times as an extra value, SLP
vectorizer takes it into account only once instead of actual number of
using.
For example:
```
int val = 1;
for (int y = 0; y < 8; y++) {
for (int x = 0; x < 8; x++) {
val = val + input[y * 8 + x] + 3;
}
}
```
We have 2 extra rguments: `1` - initial value of horizontal reduction
and `3`, which is added 8*8 times to the reduction. Before the patch we
added `1` to the reduction value and added once `3`, though it must be
added 64 times.
Reviewers: mkuper, mzolotukhin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30262
llvm-svn: 295949
AVX versions of the converts work on f32/f64 types, while AVX512 version work on vectors.
Differential Revision: https://reviews.llvm.org/D29988
llvm-svn: 295940
Implement isLegalToVectorizeLoadChain for AMDGPU to avoid
producing private address spaces accesses that will need to be
split up later. This was doing the wrong thing in the case
where the queried chain was an even number of elements.
A possible <4 x i32> store was being split into
store <2 x i32>
store i32
store i32
rather than
store <2 x i32>
store <2 x i32>
when legal.
llvm-svn: 295933
There were some older intrinsics that only existed for less than a month in 2012 that still exist in some out of tree test files that start with this string, but aren't able to be handled by the current upgrade code and fire an assert. Now we'll go back to treating them as not intrinsics at all and just passing them through to output.
Fixes PR32041, sort of.
llvm-svn: 295930
The manual is unclear on the details of this. It's not
clear to me if denormals are not allowed with clamp,
or if that is only omod. Not allowing denorms for
fp16 or fp64 isn't useful so I also question if that
is really a restriction. Same with whether this is valid
without IEEE mode enabled.
llvm-svn: 295905