Codeview line tables for functions in different sections refer to a common
STRING_TABLE_SUBSECTION for filenames.
This happens when building with -Gy or with inline functions with MSVC.
Original patch by Jeff Muizelaar!
llvm-svn: 219125
We used to return PartialAlias if *either* variable being queried interacted
with arguments or globals. AFAICT, we can change this to only returning
MayAlias iff *both* variables being queried interacted with arguments or
globals.
Also, adding some basic functionality tests: some basic IPA tests, checking
that we give conservative responses with arguments/globals thrown in the mix,
and ensuring that we trace values through stores and loads.
Note that saying that 'x' interacted with arguments or globals means that the
Attributes of the StratifiedSet that 'x' belongs to has any bits set.
Patch by George Burgess IV, thanks!
llvm-svn: 219122
output of the llvm-dwarfdump and llvm-objdump report the endianness
used when the object files were generated.
Patch by Charlie Turner.
llvm-svn: 219110
These will make it easier to test further changes to the
code generation and optimization pipelines as those are
moved to subtargets initialized with target feature and
target cpu.
llvm-svn: 219106
It was just calling a bunch of DwarfUnit functions anyway, as can be
seen by the simplification of removing "TheCU" from all the function
calls in the implementation.
llvm-svn: 219103
group's interface to all of the implementations of that analysis group.
The groups themselves can and do manage this anyways, the pass registry
needn't involve itself.
llvm-svn: 219097
pass registry.
This style of registry is somewhat questionable, but it being
non-monotonic is crazy. No one is (or should be) unloading DSOs with
passes and unregistering them here. I've checked with a few folks and
I don't know of anyone using this functionality or any important use
case where it is necessary.
llvm-svn: 219096
Particularly, it addresses cases where Reassociate breaks Subtracts but then fails to optimize combinations like I1 + -I2 where I1 and I2 have the same rank and are identical.
Patch by Dmitri Shtilman.
llvm-svn: 219092
This trades a (register-renamer-friendly) movaps for a floating point
/ integer domain cross. That is a very bad trade, even on architectures
where domain crossing is relatively fast. On any chip where there is
even a cycle stall, this is a Very Bad Idea. It doesn't even seem likely
to cause a spill to be introduced because the reason for the copy is to
destructively shuffle in place.
Thanks to Ben Kramer for fixing a bug in this code that my new shuffle
lowering exposed and highlighting that perhaps it should just go away.
=]
llvm-svn: 219090
that are unused.
This allows the combiner to delete math feeding shuffles where the math
isn't actually necessary. This improves some of the vperm2x128 tests
that regressed when the vector shuffle lowering started actually
generating vperm instructions rather than forcibly decomposing them.
Sadly, this isn't enough to get this *really* right because we still
form a completely unnecessary permutation. To fix that, we also need to
fold shuffles which just rearrange concatenated or inserted subvectors.
llvm-svn: 219086
new vector shuffle lowering.
This is loosely based on a patch by Marius Wachtler to the PR (thanks!).
I refactored it a bi to use std::count_if and a mutable array ref but
the core idea was exactly right. I also added some direct testing of
this case.
I believe PR21137 is now the only remaining regression.
llvm-svn: 219081
shuffles using AVX and AVX2 instructions. This fixes PR21138, one of the
few remaining regressions impacting benchmarks from the new vector
shuffle lowering.
You may note that it "regresses" many of the vperm2x128 test cases --
these were actually "improved" by the naive lowering that the new
shuffle lowering previously did. This regression gave me fits. I had
this patch ready-to-go about an hour after flipping the switch but
wasn't sure how to have the best of both worlds here and thought the
correct solution might be a completely different approach to lowering
these vector shuffles.
I'm now convinced this is the correct lowering and the missed
optimizations shown in vperm2x128 are actually due to missing
target-independent DAG combines. I've even written most of the needed
DAG combine and will submit it shortly, but this part is ready and
should help some real-world benchmarks out.
llvm-svn: 219079
Joerg suggested on IRC that I look at generalizing the logic from r219067 to
handle more general redundancies (like removing an assume(x > 3) dominated by
an assume(x > 5)). The way to do this would be to ask ValueTracking to
determine the value of the i1 argument. It turns out that ValueTracking is not
very good at this right now (although it does get the trivial redundancy case)
because it does not understand ICmps. Nevertheless, the resulting code in
InstCombine is simpler than r219067, so we might as well do it now.
llvm-svn: 219070
For any @llvm.assume intrinsic, if there is another which dominates it and uses
the same condition, then it is redundant and can be removed. While this does
not alter the semantics of the @llvm.assume intrinsics, it makes subsequent
handling more efficient (and the resulting IR easier to read).
llvm-svn: 219067
Fix http://llvm.org/PR21158 by adding a cast to unsigned long long,
so the comparison would be between two unsigned long longs instead
of bool and unsigned long long.
if (getAsUnsignedInteger(*this, Radix, ULLVal) ||
static_cast<unsigned long long>(static_cast<T>(ULLVal)) != ULLVal)
llvm-svn: 219065
This requires exposing some of the current function state from
DwarfDebug. I hope there's not too much of that to expose as I go
through all the functions, but it still seems nicer to expose singular
data down to multiple consumers, than have consumers expose raw mapping
data structures up to DwarfDebug for building subprograms.
Part of a series of refactoring to allow subprograms in both the
skeleton and dwo CUs under Fission.
llvm-svn: 219060
In preparation for sinking all the subprogram emission code down from
DwarfDebug into DwarfCompileUnit, this will avoid bloating
DwarfUnit.h/cpp greatly and make concerns a bit more clear/isolated.
(sinking this handling down is part of the work to handle emitting
minimal subprograms for -gmlt-like data into the skeleton CU under
fission)
llvm-svn: 219057
Update the entire regression test suite for the new shuffles. Remove
most of the old testing which was devoted to the old shuffle lowering
path and is no longer relevant really. Also remove a few other random
tests that only really exercised shuffles and only incidently or without
any interesting aspects to them.
Benchmarking that I have done shows a few small regressions with this on
LNT, zero measurable regressions on real, large applications, and for
several benchmarks where the loop vectorizer fires in the hot path it
shows 5% to 40% improvements for SSE2 and SSE3 code running on Sandy
Bridge machines. Running on AMD machines shows even more dramatic
improvements.
When using newer ISA vector extensions the gains are much more modest,
but the code is still better on the whole. There are a few regressions
being tracked (PR21137, PR21138, PR21139) but by and large this is
expected to be a win for x86 generated code performance.
It is also more correct than the code it replaces. I have fuzz tested
this extensively with ISA extensions up through AVX2 and found no
crashes or miscompiles (yet...). The old lowering had a few miscompiles
and crashers after a somewhat smaller amount of fuzz testing.
There is one significant area where the new code path lags behind and
that is in AVX-512 support. However, there was *extremely little*
support for that already and so this isn't a significant step backwards
and the new framework will probably make it easier to implement lowering
that uses the full power of AVX-512's table-based shuffle+blend (IMO).
Many thanks to Quentin, Andrea, Robert, and others for benchmarking
assistance. Thanks to Adam and others for help with AVX-512. Thanks to
Hal, Eric, and *many* others for answering my incessant questions about
how the backend actually works. =]
I will leave the old code path in the tree until the 3 PRs above are at
least resolved to folks' satisfaction. Then I will rip it (and 1000s of
lines of code) out. =] I don't expect this flag to stay around for very
long. It may not survive next week.
llvm-svn: 219046
It turns out this combine was always somewhat flawed -- there are cases
where nested VZEXT nodes *can't* be combined: if their types have
a mismatch that can be observed in the result. While none of these show
up in currently, once I switch to the new vector shuffle lowering a few
test cases actually form such nested VZEXT nodes. I've not come up with
any IR pattern that I can sensible write to exercise this, but it will
be covered by tests once I flip the switch.
llvm-svn: 219044
nodes to the DAG combining of them.
This will allow the combine to fire on both old vector shuffle lowering
and the new vector shuffle lowering and generally seems like a cleaner
design. I've trimmed down the code a bit and tried to make it and the
surrounding combine fairly clean while moving it around.
llvm-svn: 219042
the various ways in which blends can be used to do vector element
insertion for lowering with the scalar math instruction forms that
effectively re-blend with the high elements after performing the
operation.
This then allows me to bail on the element insertion lowering path when
we have SSE4.1 and are going to be doing a normal blend, which in turn
restores the last of the blends lost from the new vector shuffle
lowering when I got it to prioritize insertion in other cases (for
example when we don't *have* a blend instruction).
Without the patterns, using blends here would have regressed
sse-scalar-fp-arith.ll *completely* with the new vector shuffle
lowering. For completeness, I've added RUN-lines with the new lowering
here. This is somewhat superfluous as I'm about to flip the default, but
hey, it shows that this actually significantly changed behavior.
The patterns I've added are just ridiculously repetative. Suggestions on
making them better very much welcome. In particular, handling the
commuted form of the v2f64 patterns is somewhat obnoxious.
llvm-svn: 219033
perform a load to use blendps rather than movss when it is available.
For non-loads, blendps is *much* faster. It can execute on two ports in
Sandy Bridge and Ivy Bridge, and *three* ports on Haswell. This fixes
one of the "regressions" from aggressively taking the "insertion" path
in the new vector shuffle lowering.
This does highlight one problem with blendps -- it isn't commuted as
heavily as it should be. That's future work though.
llvm-svn: 219022
C++14 adds new builtin signatures for 'operator delete'. This change allows
new/delete pairs to be removed in C++14 onwards, as they were in C++11 and
before.
llvm-svn: 219014
This reverts commit r218918, effectively reapplying r218914 after fixing
an Ocaml bindings test and an Asan crash. The root cause of the latter
was a tightened-up check in `DILexicalBlock::Verify()`, so I'll file a
PR to investigate who requires the loose check (and why).
Original commit message follows.
--
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
llvm-svn: 219010
In the X86 backend, matching an address is initiated by the 'addr' complex
pattern and its friends. During this process we may reassociate and-of-shift
into shift-of-and (FoldMaskedShiftToScaledMask) to allow folding of the
shift into the scale of the address.
However as demonstrated by the testcase, this can trigger CSE of not only the
shift and the AND which the code is prepared for but also the underlying load
node. In the testcase this node is sitting in the RecordedNode and MatchScope
data structures of the matcher and becomes a deleted node upon CSE. Returning
from the complex pattern function, we try to access it again hitting an assert
because the node is no longer a load even though this was checked before.
Now obviously changing the DAG this late is bending the rules but I think it
makes sense somewhat. Outside of addresses we prefer and-of-shift because it
may lead to smaller immediates (FoldMaskAndShiftToScale is an even better
example because it create a non-canonical node). We currently don't recognize
addresses during DAGCombiner where arguably this canonicalization should be
performed. On the other hand, having this in the matcher allows us to cover
all the cases where an address can be used in an instruction.
I've also talked a little bit to Dan Gohman on llvm-dev who added the RAUW for
the new shift node in FoldMaskedShiftToScaledMask. This RAUW is responsible
for initiating the recursive CSE on users
(http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-September/076903.html) but it
is not strictly necessary since the shift is hooked into the visited user. Of
course it's safer to keep the DAG consistent at all times (e.g. for accurate
number of uses, etc.).
So rather than changing the fundamentals, I've decided to continue along the
previous patches and detect the CSE. This patch installs a very targeted
DAGUpdateListener for the duration of a complex-pattern match and updates the
matching state accordingly. (Previous patches used HandleSDNode to detect the
CSE but that's not practical here). The listener is only installed on X86.
I tested that there is no measurable overhead due to this while running
through the spec2k BC files with llc. The only thing we pay for is the
creation of the listener. The callback never ever triggers in spec2k since
this is a corner case.
Fixes rdar://problem/18206171
llvm-svn: 219009
The test Atomics-32.ll was both redundant (all operations are also checked by
atomics.ll at least) and not actually checking correctness (it was not using
FileCheck, just verifying that the compiler does not crash).
llvm-svn: 218997
Summary:
hwsync is only required for seq_cst fences, acquire and release one can use
the cheaper lwsync.
Test Plan: Added some cases to atomics.ll + make check-all
Reviewers: jfb, wschmidt
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5317
llvm-svn: 218995
Summary:
The register names t4-t7 are not available in the N32 and N64 ABIs.
This patch prints a warning, when those names are used in N32/64,
along with a fix-it with the correct register names.
Patch by Vasileios Kalintiris
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5272
llvm-svn: 218989
Adding and modifying CMakeLists.txt files to run unit tests under
unittests/Target/* if the directory exists. Adding basic unit test to check
that code emitter object can be retrieved.
Differential Revision: http://reviews.llvm.org/D5523
Change by: Colin LeMahieu
llvm-svn: 218986
and MOVSD nodes for single element vector inserts.
This is particularly important because a number of patterns in the
backend detect these patterns and leverage them to simplify things. It
also fixes quite a few of the insertion bad code examples. However, it
regresses a specific area: when available, blendps and blendpd are
*dramatically* faster than movss and movsd respectively. But it doesn't
really work to form the blend logic first because the blends *aren't* as
crazy efficient when the data is coming from memory anyways, and thus
will have a movss or movsd regardless. Also, doing that would block
a bunch of the patterns that this is designed to hit.
So my plan is to go into the patterns for lowering MOVSS and MOVSD and
lower them via blends when available. However that's a pretty invasive
restructuring so it will need to be a follow-up patch.
I have already gone into the patterns to lower MOVSS and MOVSD from
memory using MOVLPD, etc. Without that, several of the test cases
I already have regress.
llvm-svn: 218985
That commit was introduced in order to help investigate a problem in ARM
codegen breaking from commit 202304 (Add a limit to the heuristic that register
allocates instructions in local order). Recent analisys indicated that the
problem no longer exists, so I'm reverting this change.
See PR18996.
llvm-svn: 218981
lowering to handle the potential mirroring of 2-element vectors (because
we can't reliably sort them one way) in the caller rather than in the
insertion logic.
This will simplify things considerably as more ways to fail to match the
insertion are added because now we have a nice try and retry point.
llvm-svn: 218980
I got them quite wrong when updating it and had the SSE4.1 run checked
for SSE2 and the SSE2 run checked for SSE4.1. I think everything was
actually generic SSE, but this still seems good to fix. While here,
hoist the triple into the IR and make the flag set a bit more direct in
what it is trying to test.
llvm-svn: 218978
lowering to match VZEXT_MOVL patterns.
I hadn't realized that these had sufficient pattern smarts in the
backend to lower zext-ing from the low element of a vector without it
being a scalar_to_vector node. They do, and this is how to match a bunch
of patterns for movq, movss, etc.
There is a weird propensity to end up using pshufd to place the element
afterward even though it means domain crossing (or rather, to use
xorps+movss to zext the element rather than movq) but that's an
orthogonal problem with VZEXT_MOVL that someone should probably look at.
llvm-svn: 218977
vector to a zero vector for the v2 cases and fix the v4 integer cases to
actually blend from a vector.
There are already seprate tests for the case of inserting from a scalar.
These cases cover a lot of the regressions I've seen in the regression
test suite for the new vector shuffle lowering and specifically cover
the reported lack of using various zext-ing instruction patterns. My
next patch should fix a big chunk of this, but wanted to get a nice
baseline for these patterns in the test cases first.
llvm-svn: 218976
element types to form illegal vector types.
I've added a special SSE1 test case here that makes sure we don't break
this going forward.
llvm-svn: 218974
testing that we generated divps and divss but not in a very systematic
way. There are other tests for widening binary operations already that
make these unnecessary.
The second one seems mostly about testing Atom as well as normal X86,
but despite the comment claiming it is testing a different instruction
sequence, it then tests for exactly the same div instruction sequence!
(The sequence of instructions is actually quite different on Atom, but
not the sequence of div instructions....)
And then it has an "execution" test that simply isn't run? Very strange.
Anyways, none of this is really needed so clean this up.
llvm-svn: 218972
intergrated much more fully into some logical part of the backend to
really understand what it is trying to accomplish and how to update it.
I suspect it no longer holds enough value to be worth having.
llvm-svn: 218950
shufle switch.
I nuked a win64 config from one test as it doesn't really make sense to
cover that ABI specially for generic v2f32 tests...
llvm-svn: 218948
This patch broke 447.dealII on Darwin. I'm currently working on a reduced
test-case, but reverting for now to keep the bots happy.
<rdar://problem/18530107>
llvm-svn: 218944
test cases that will change with the new vector shuffle lowering. This
gives us a nice baseline for deltas against. I've checked and removed
the cases where there were weird register usage being pinned down, and
all of these are extremely pin-pointed tests so fully checking them
seems very appropriate.
llvm-svn: 218941
Summary:
I changed various bits of the compilation of atomics recently, and forgot
updating the documentation. This patch just brings it up to date.
Test Plan: no change to the code
Reviewers: jfb
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5590
llvm-svn: 218937
tighter, more strict FileCheck assertions. Some of these I really like
as they show case exactly what instruction sequences come out of these
microscopic functionality tests.
llvm-svn: 218936
baseline for updates from the new vector shuffle lowering.
I've inspected the results here, and I couldn't find any register
allocation decisions where there should be any realistic way to register
allocate things differently. The closest was the imul test case. If you
see something here you'd like register number variables on, just shout
and I'll add them.
llvm-svn: 218935
need to be updated for the new vector shuffle lowering.
After talking to Adam Nemet, Tim Northover, etc., it seems that testing
MC encodings in the same suite as the basic codegen isn't the right
approach. Instead, we're going to want dedicated MC tests for the
encodings. These encodings are starting to get in my way so I wanted to
cut them out early. The total set of instructions that should have
encoding tests added is:
vpaddd
vsqrtss
vsqrtsd
vmovlhps
vmovhlps
valignq
vbroadcastss
Not too many parts of these tests were even using this. =]
llvm-svn: 218932
No functional change intended.
Very similar to the change I made for subvector extract in r218480.
test/CodeGen/X86/avx512-insert-extract.ll covers this.
llvm-svn: 218928
Older Book-E cores, such as the PPC 440, support only msync (which has the same
encoding as sync 0), but not any of the other sync forms. Newer Book-E cores,
however, do support sync, and for performance reasons we should allow the use
of the more-general form.
This refactors msync use into its own feature group so that it applies by
default only to older Book-E cores (of the relevant cores, we only have
definitions for the PPC440/450 currently).
llvm-svn: 218923
Summary:
Atomic loads and store of up to the native size (32 bits, or 64 for PPC64)
can be lowered to a simple load or store instruction (as the synchronization
is already handled by AtomicExpand, and the atomicity is guaranteed thanks to
the alignment requirements of atomic accesses). This is exactly what this patch
does. Previously, these were implemented by complex
load-linked/store-conditional loops.. an obvious performance problem.
For example, this patch turns
```
define void @store_i8_unordered(i8* %mem) {
store atomic i8 42, i8* %mem unordered, align 1
ret void
}
```
from
```
_store_i8_unordered: ; @store_i8_unordered
; BB#0:
rlwinm r2, r3, 3, 27, 28
li r4, 42
xori r5, r2, 24
rlwinm r2, r3, 0, 0, 29
li r3, 255
slw r4, r4, r5
slw r3, r3, r5
and r4, r4, r3
LBB4_1: ; =>This Inner Loop Header: Depth=1
lwarx r5, 0, r2
andc r5, r5, r3
or r5, r4, r5
stwcx. r5, 0, r2
bne cr0, LBB4_1
; BB#2:
blr
```
into
```
_store_i8_unordered: ; @store_i8_unordered
; BB#0:
li r2, 42
stb r2, 0(r3)
blr
```
which looks like a pretty clear win to me.
Test Plan:
fixed the tests + new test for indexed accesses + make check-all
Reviewers: jfb, wschmidt, hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5587
llvm-svn: 218922
to be a ManagedStatic in r218163 to not be a global variable written and
read to from within the innards of SpillPlacement.
This will fix a really scary race condition for anyone that has two
copies of LLVM running spill placement concurrently. Yikes!
This will also fix a really significant compile time hit that r218163
caused because the spill placement threshold read is actually in the
*very* hot path of this code. The memory fence on each read was showing
up as huge compile time regressions when spilling is responsible for
most of the compile time. For example, optimizing sanitized code showed
over 50% compile time regressions here. =/
llvm-svn: 218921
Do not eliminate the frame pointer if there is a stackmap or patchpoint in the
function. All stackmap references should be FP relative.
This fixes PR21107.
llvm-svn: 218920
This patch defines a new iterator for the imported symbols.
Make a change to COFFDumper to use that iterator to print
out imported symbols and its ordinals.
llvm-svn: 218915
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
llvm-svn: 218914
elements as well as integer elements in order to form simpler shuffle
patterns.
This is the primary reason why we were failing to match some of the
2-and-2 floating point shuffles such as PR21140. Even after fixing this
we need to support some extra patterns in the backend in order to match
the resulting X86ISD::UNPCKL nodes into the correct instructions. This
commit should fix PR21140 and includes more comprehensive testing of
insertion patterns in v4 shuffles.
Not all of the added tests are beautiful. For example, we don't have
clever instructions to insert-via-load in the integer domain. There are
also some places where we aren't sufficiently cunning with our use of
movq and movd, but that's future work.
llvm-svn: 218911
When unsafe-fp-math is enabled, we can turn sqrt(X) * sqrt(X) into X.
This can happen in the real world when calculating x ** 3/2. This occurs
in test-suite/SingleSource/Benchmarks/BenchmarkGame/n-body.c.
Differential Revision: http://reviews.llvm.org/D5584
llvm-svn: 218906
floating point and integer domains.
Merge the AVX2 test into it and add an extra RUN line. Generate clean
FileCheck statements with my script. Remove the now merged AVX2 tests.
llvm-svn: 218903
Every time we were adding or removing an expression when generating a
coverage mapping we were doing a linear search to try and deduplicate
the list. The indices in the list are important, so we can't just
replace it by a DenseMap entirely, but an auxilliary DenseMap for fast
lookup massively improves the performance issues I was seeing here.
llvm-svn: 218892
When the flag is given, the command prints out the COFF import table.
Currently only the import table directory will be printed.
I'm going to make another patch to print out the imported symbols.
The implementation of import directory entry iterator in
COFFObjectFile.cpp was buggy. This patch fixes that too.
http://reviews.llvm.org/D5569
llvm-svn: 218891
When I was preparing r218879 for commit, I removed an early return
that I decided was just noise. It wasn't. This is r218879 no-crash
edition.
This reverts commit r218881, reapplying r218879.
llvm-svn: 218887
The Terms vector here represented a polynomial of of all possible
counters, and is used to simplify expressions when generating coverage
mapping. There are a few problems with this:
1. Keeping the vector as a member is wasteful, since we clear it every
time we use it.
2. Most expressions refer to a subset of the counters, so we end up
iterating over a large number of zeros doing nothing a lot of the
time.
This updates the user of the vector to store the terms locally, and
uses a sort and combine approach so that we only operate on counters
that are actually used in a given expression. For small cases this
makes very little difference, but in cases with a very large number of
counted regions this is a significant performance fix.
llvm-svn: 218879
My commit rL216160 introduced a bug PR21014: IndVars widens code 'for (i = ; i < ...; i++) arr[ CONST - i]' into 'for (i = ; i < ...; i++) arr[ i - CONST]'
thus inverting index expression. This patch fixes it.
Thanks to Jörg Sonnenberger for pointing.
Differential Revision: http://reviews.llvm.org/D5576
llvm-svn: 218867
This file isn't really doing anything useful. Many of the tests that
seem to be combined are also repeats from other test files. Many of the
other tests, despite the comment that they should be combined into
a single shuffle... well... aren't combined into a single shuffle.
=/
llvm-svn: 218862
least seem *slightly* more interesting test wise, although given how
spotily we actually combine anything, I remain somewhat suspicious.
llvm-svn: 218861
checks for all the ISA variants.
If the SSE2 checks here terrify you, good. This is (in large part) the
kind of amazingly bad code that is holding LLVM back when vectorizing on
older ISAs.
At the same time, these tests seem increasingly dubious to me. There are
a very large number of tests and it isn't clear that they are
systematically covering a specific set of functionality. Anyways,
I don't want to reduce testing during the transition, I just want to
consolidate it to where it is easier to manage.
llvm-svn: 218860
file.
Some of these really don't make sense to test -- we're testing for the
*lack* of combining two shuffles into one, presumably because the two
would generate better shuffles in the end. But if you look at the
generated code shown here, in many cases the generated code is, frankly,
terrible. Or we combine any two generated shuffles back into a single
instruction! I've left a FIXME to revisit these decisions.
llvm-svn: 218859
and use the new grouped FileCheck patterns to match them.
No interesting changes yet, but this test is now in proper form to have
the other shuffle combining tests merged into it.
llvm-svn: 218857
The test has to do with DAG combines, and so it doesn't need the new
vector shuffle lowering to be effective. Also, it has a nice in-IR
triple string which we should really be using rather than command line
flags (unless it varies form RUN-line to RUN-line). Finally, I much
prefer letting LLVM synthesize the correct datalayout string from the
triple rather than baking one in here that will just become stale.
llvm-svn: 218856
generic DAG combining of shuffles relevant to x86.
My plan is to fold a bunch of the other DAG combining test cases into
this one, while converting them to use the nice new FileCheck assertion
syntax.
llvm-svn: 218855
a bare-metal triple and have nice BB labels, etc.
No significant change here, just tidying up to have a consistent set of
OS-agnostic vector functionality here.
llvm-svn: 218854
in the future to attach useful information about the PBQP graph (e.g. the
associated MachineFunction, pointers to regalloc passes) to the graph itself,
making that information accessible to the solver. This should also allow the
PBQPBuilder interface to be simplified.
llvm-svn: 218848
When writing a coverage mapping we iterate through the mapping regions
in order of FileID, but we were then repeatedly searching from the
beginning of the list to count the number of regions with a given
FileID.
It is simpler and more efficient to search forward from the current
iterator to find the number of regions.
llvm-svn: 218842
matching and lowering 64-bit insertions.
The first problem was that we weren't looking through bitcasts to
discover that we *could* lower as insertions. Once fixed, we in turn
weren't looking through bitcasts to discover that we could fold a load
into the lowering. Once fixed, we weren't forming a SCALAR_TO_VECTOR
node around the inserted element and instead were passing a scalar to
a DAG node that expected a vector. It turns out there are some patterns
that will "lower" this into the correct asm, but the rest of the X86
backend is very unhappy with such antics.
This should fix a few more edge case regressions I've spotted going
through the regression test suite to enable the new vector shuffle
lowering.
llvm-svn: 218839
FastISel has a fixed set of virtual functions that are overridden by the
tablegen-generated code for each target. These functions are distinguished by
the kinds of operands, e.g., register + immediate = "ri". The FastISel emitter
has been blindly emitting functions with different combinations of operand
kinds, even for combinations that are completely unused by FastISel, e.g.,
"fastEmit_rrr". Change to filter out functions that will be irrelevant for
FastISel and do not bother generating the code for them. Also add explicit
"override" keywords for the virtual functions that are overridden.
llvm-svn: 218838
This reverts commit r218820. It turns out that Adrian has an
outstanding SROA patch that uses this.
I've updated it to forward to `createExpression()`.
llvm-svn: 218828
Negative FABS of either a scalar or vector should be handled the same way
on x86 with SSE/AVX: a single OR instruction of the FP operand with a
constant to light up the sign bit(s).
http://llvm.org/bugs/show_bug.cgi?id=20578
Differential Revision: http://reviews.llvm.org/D5201
llvm-svn: 218822
I neglected to update `DIBuilder::createPieceExpression()` in r218797,
which I noticed while rebasing a patch for PR17891. On closer
inspection, it looks like dead code.
If there are any downstream users of this, you should transition to the
more general `createExpression()`. Or, we can add this back, but then
it should just forward to `createExpression()`.
llvm-svn: 218820
test file.
This old test had a bunch of functions that were never even checked. =/
The only thing it really did was to make sure that we did something
reasonable in 32-bit mode with SSE4.1. Adding another run line to the
main vector-sext.ll test seems a better way to do that.
llvm-svn: 218810
of architectures: SSE2, SSSE3, SSE4.1, AVX, and AVX2.
Unfortunately, this exposses the absolute horror of the code we generate
for many of these patterns. Anyone wanting to familiarize themselves
with the x86 backend and improve performance could do a lot of good
sitting down and making these test cases not look so terrible. While the
new vector shuffle code I'm working on well help some, it won't fix all
of the crimes here.
llvm-svn: 218807
As discussed here:
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20140609/220598.html
And again here:
http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-September/077168.html
The sqrt of a negative number when using the llvm intrinsic is undefined.
We should return undef rather than 0.0 to match the definition in the LLVM IR lang ref.
This change should not affect any code that isn't using "no-nans-fp-math";
ie, no-nans is a requirement for generating the llvm intrinsic in place of a sqrt function call.
Unfortunately, the behavior introduced by this patch will not match current gcc, xlc, icc, and
possibly other compilers. The current clang/llvm behavior of returning 0.0 doesn't either.
We knowingly approve of this difference with the other compilers in an attempt to flag code
that is invoking undefined behavior.
A front-end warning should also try to convince the user that the program will fail:
http://llvm.org/bugs/show_bug.cgi?id=21093
Differential Revision: http://reviews.llvm.org/D5527
llvm-svn: 218803
These tests are far and away the best sext and zext tests we have for
vectors. I'm going to merge the other similar tests into them and expand
the ISA coverage.
llvm-svn: 218800
`DIExpression`'s elements are 64-bit integers that are stored as
`ConstantInt`. The accessors already encapsulate the storage. This
commit updates the `DIBuilder` API to also encapsulate that.
llvm-svn: 218797
script to make them nice and predictable. This will ease updating them
for the new vector shuffle lowering and seeing the delta if any.
llvm-svn: 218795
avx-sext.ll using my new script.
Also add an AVX2 mode to this test.
Part of cleaning up the test suite before enabling the new vector
shuffle lowering. This also highlights some of the abysmal failures of
the old shuffle lowering. Check out those 'pinsrw' and 'pextrw'
sequences!
llvm-svn: 218794
- Problem
One program takes ~3min to compile under -O2. This happens after a certain
function A is inlined ~700 times in a function B, inserting thousands of new
BBs. This leads to 80% of the compilation time spent in
GVN::processNonLocalLoad and
MemoryDependenceAnalysis::getNonLocalPointerDependency, while searching for
nonlocal information for basic blocks.
Usually, to avoid spending a long time to process nonlocal loads, GVN bails out
if it gets more than 100 deps as a result from
MD->getNonLocalPointerDependency. However this only happens *after* all
nonlocal information for BBs have been computed, which is the bottleneck in
this scenario. For instance, there are 8280 times where
getNonLocalPointerDependency returns deps with more than 100 bbs and from
those, 600 times it returns more than 1000 blocks.
- Solution
Bail out early during the nonlocal info computation whenever we reach a
specified threshold. This patch proposes a 100 BBs threshold, it also
reduces the compile time from 3min to 23s.
- Testing
The test-suite presented no compile nor execution time regressions.
Some numbers from my machine (x86_64 darwin):
- 17s under -Oz (which avoids inlining).
- 1.3s under -O1.
- 2m51s under -O2 ToT
*** 23s under -O2 w/ Result.size() > 100
- 1m54s under -O2 w/ Result.size() > 500
With NumResultsLimit = 100, GVN yields the same outcome as in the
unlimited 3min version.
http://reviews.llvm.org/D5532
rdar://problem/18188041
llvm-svn: 218792
No functionality change intended.
This implements Elena's idea to put the new additionalOperand outside the
switch to cover all cases
(http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20140929/237763.html).
Note only nontrivial change is in MRMSrcMemFrm. This requires an inclusive
interval of [2, 4] because we have prefix-dependent *optional* immediate
operand.
llvm-svn: 218790
As with x86 and AArch64, certain situations can arise where we need to spill
CPSR in the middle of a calculation. These should be avoided where possible
(MRS/MSR is rather expensive), which ARM is actually better at than the other
two since it tries to Glue defs to uses, but as a last ditch effort, copying is
better than crashing.
rdar://problem/18011155
llvm-svn: 218789
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
Note: I accidentally committed a bogus older version of this patch previously.
llvm-svn: 218787
Summary: Implement conversion of 64 to 32 bit floating point numbers (fptrunc) in mips fast-isel
Test Plan:
fptrunc.ll
checked also with 4 internal mips build bot flavors mip32r1/miprs32r2 and at -O0 and -O2
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: rfuhler
Differential Revision: http://reviews.llvm.org/D5553
llvm-svn: 218785
r206400 and r209442 added remarks that are disabled by default.
However, if a diagnostic handler is registered, the remarks are sent
unfiltered to the handler. This is the right behaviour for clang, since
it has its own filters.
However, the diagnostic handler exposed in the LTO API receives only the
severity and message. It doesn't have the information to filter by pass
name. For LTO, disabled remarks should be filtered by the producer.
I've changed `LLVMContext::setDiagnosticHandler()` to take a `bool`
argument indicating whether to respect the built-in filters. This
defaults to `false`, so other consumers don't have a behaviour change,
but `LTOCodeGenerator::setDiagnosticHandler()` sets it to `true`.
To make this behaviour testable, I added a `-use-diagnostic-handler`
command-line option to `llvm-lto`.
This fixes PR21108.
llvm-svn: 218784
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
llvm-svn: 218778
Summary: It's better if we have a consistent name for .cpload-related functions.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5437
llvm-svn: 218768