Summary:
The tail call optimisation is performed before register allocation, so
at that point we don't know if LR is being spilt or not. If LR was spilt
to the stack, then we cannot do a tail call optimisation. That would
involve popping back into LR which is not possible in Thumb1 code.
Reviewers: rengolin, jmolloy, rovka, olista01
Reviewed By: olista01
Subscribers: llvm-commits, aemerson
Differential Revision: https://reviews.llvm.org/D29020
llvm-svn: 294000
This implements execute-only support for ARM code generation, which
prevents the compiler from generating data accesses to code sections.
The following changes are involved:
* Add the CodeGen option "-arm-execute-only" to the ARM code generator.
* Add the clang flag "-mexecute-only" as well as the GCC-compatible
alias "-mpure-code" to enable this option.
* When enabled, literal pools are replaced with MOVW/MOVT instructions,
with VMOV used in addition for floating-point literals. As the MOVT
instruction is required, execute-only support is only available in
Thumb mode for targets supporting ARMv8-M baseline or Thumb2.
* Jump tables are placed in data sections when in execute-only mode.
* The execute-only text section is assigned section ID 0, and is
marked as unreadable with the SHF_ARM_PURECODE flag with symbol 'y'.
This also overrides selection of ELF sections for globals.
llvm-svn: 289784
Summary: ARMv6m supports dmb etc fench instructions but not ldrex/strex etc. So for some atomic load/store, LLVM should inline instructions instead of lowering to __sync_ calls.
Reviewers: rengolin, efriedma, t.p.northover, jmolloy
Subscribers: efriedma, aemerson, llvm-commits
Differential Revision: https://reviews.llvm.org/D26120
llvm-svn: 285969
The core of the change is supposed to be NFC, however it also fixes
what I believe was an undefined behavior when calling:
va_start(ValueArgs, Desc);
with Desc being a StringRef.
Differential Revision: https://reviews.llvm.org/D25342
llvm-svn: 283671
This is a port of XRay to ARM 32-bit, without Thumb support yet. The XRay instrumentation support is moving up to AsmPrinter.
This is one of 3 commits to different repositories of XRay ARM port. The other 2 are:
https://reviews.llvm.org/D23932 (Clang test)
https://reviews.llvm.org/D23933 (compiler-rt)
Differential Revision: https://reviews.llvm.org/D23931
llvm-svn: 281878
And associated commits, as they broke the Thumb bots.
This reverts commit r280935.
This reverts commit r280891.
This reverts commit r280888.
llvm-svn: 280967
I mised the check that it had to support ARM to work. This commit tries
to fix that, to make sure we don't emit ARM code in Thumb-only mode.
llvm-svn: 280935
This is a port of XRay to ARM 32-bit, without Thumb support yet. The XRay instrumentation support is moving up to AsmPrinter.
This is one of 3 commits to different repositories of XRay ARM port. The other 2 are:
1. https://reviews.llvm.org/D23932 (Clang test)
2. https://reviews.llvm.org/D23933 (compiler-rt)
Differential Revision: https://reviews.llvm.org/D23931
llvm-svn: 280888
This patch adds support for some new relocation models to the ARM
backend:
* Read-only position independence (ROPI): Code and read-only data is accessed
PC-relative. The offsets between all code and RO data sections are known at
static link time. This does not affect read-write data.
* Read-write position independence (RWPI): Read-write data is accessed relative
to the static base register (r9). The offsets between all writeable data
sections are known at static link time. This does not affect read-only data.
These two modes are independent (they specify how different objects
should be addressed), so they can be used individually or together. They
are otherwise the same as the "static" relocation model, and are not
compatible with SysV-style PIC using a global offset table.
These modes are normally used by bare-metal systems or systems with
small real-time operating systems. They are designed to avoid the need
for a dynamic linker, the only initialisation required is setting r9 to
an appropriate value for RWPI code.
I have only added support to SelectionDAG, not FastISel, because
FastISel is currently disabled for bare-metal targets where these modes
would be used.
Differential Revision: https://reviews.llvm.org/D23195
llvm-svn: 278015
This is a follow-up for r273544.
The end goal is to get rid of the isSwift / isCortexXY / isWhatever methods.
This commit also removes two command-line flags that weren't used in any of the
tests: widen-vmovs and swift-partial-update-clearance. The former may be easily
replaced with the mattr mechanism, but the latter may not (as it is a subtarget
property, and not a proper feature).
Differential Revision: http://reviews.llvm.org/D21797
llvm-svn: 274620
This is a follow-up for r273544.
The end goal is to get rid of the isSwift / isCortexXY / isWhatever methods.
Since the ARM backend seems to have quite a lot of calls to these methods, I
intend to submit 5-6 subtarget features at a time, instead of one big lump.
Differential Revision: http://reviews.llvm.org/D21685
llvm-svn: 273853
Move most of the initializations in ARMSubtarget::initializeEnvironment to
member initializers.
Change suggested by Matthias Braun (see http://reviews.llvm.org/D21432).
llvm-svn: 273556
This is a cleanup commit similar to r271555, but for ARM.
The end goal is to get rid of the isSwift / isCortexXY / isWhatever methods.
Since the ARM backend seems to have quite a lot of calls to these methods, I
intend to submit 5-6 subtarget features at a time, instead of one big lump.
Differential Revision: http://reviews.llvm.org/D21432
llvm-svn: 273544
new instruction to ARM and AArch64 targets and several system registers.
Patch by: Roger Ferrer Ibanez and Oliver Stannard
Differential Revision: http://reviews.llvm.org/D20282
llvm-svn: 271670
Various bits we want to use the new ABI actually compile with "-arch armv7k
-miphoneos-version-min=9.0". Not ideal, but also not ridiculous given how
slices work.
llvm-svn: 258975
This patch was originally committed as r257883, but was reverted due to windows
failures. The cause of these failures has been fixed under r258677, hence
re-committing the original patch.
llvm-svn: 258681
This adds subtarget features for ARMv8.2-A, which builds on (and
requires the features from) ARMv8.1-A. Most assembler-visible features
of ARMv8.2-A are system instructions, and are all required parts of the
architecture, so just depend on the HasV8_2aOps subtarget feature.
There is also one large, optional feature, which adds 16-bit floating
point versions of all existing floating-point instructions (VFP and
SIMD), this is represented by the FeatureFullFP16 subtarget feature.
Differential Revision: http://reviews.llvm.org/D15036
llvm-svn: 254399
It turns out we decide whether to use SjLj exceptions or some alternative in
two separate places in the backend, and they disagreed with each other. This
led to inconsistent code and is generally a terrible idea.
So make them consistent and add an assert that they *do* match (unfortunately
MCAsmInfo isn't available in opt, so it can't be used to initialise the CodeGen
version directly).
llvm-svn: 253502
At the LLVM level this ABI is essentially a minimal modification of AAPCS to
support 16-byte alignment for vector types and the stack.
llvm-svn: 251570
supportsTailCall() has two callers. Both of them double-check isThumb1Only(),
and refuse to proceed with tail-calling in that case.
Therefore, it makes sense to move this check to
ARMSubtarget::initSubtargetFeatures, where SupportsTailCall is initialized;
and to eliminate the extra checks at the call sites.
Following a review comment, added an "assert(supportsTailCall())"
in IsEligibleForTailCall.
NFC.
llvm-svn: 248703
Currently, the availability of DSP instructions (ACLE 6.4.7) is handled in a
hand-rolled tricky condition block in tools/clang/lib/Basic/Targets.cpp, with
a FIXME: attached.
This patch changes the handling of +t2dsp to be in line with other
architecture extensions.
Following a revert of r248152 and new review comments, this patch also includes
renaming FeatureDSPThumb2 -> FeatureDSP, hasThumb2DSP() -> hasDSP(), etc.
The spelling of "t2dsp" is preserved, pending a further investigation of its
possible external usage.
Differential Revision: http://reviews.llvm.org/D12937
llvm-svn: 248519
The ARM backend has some logic that only allows the fast-isel to be enabled for
subtargets where it is known to be stable. This adds a backend option to
override this and force the fast-isel to be used for any target, to allow it to
be tested.
This is an ARM-specific option, because no other backend disables the fast-isel
on a per-subtarget basis.
llvm-svn: 248369
Summary:
This is the first patch in the series to migrate Triple's (which are ambiguous)
to TargetTuple's (which aren't).
For the moment, TargetTuple simply passes all requests to the Triple object it
holds. Once it has replaced Triple, it will start to implement the interface in
a more suitable way.
This change makes some changes to the public C++ API. In particular,
InitMCSubtargetInfo(), createMCRelocationInfo(), and createMCSymbolizer()
now take TargetTuples instead of Triples. The other public C++ API's have
been left as-is for the moment to reduce patch size.
This commit also contains a trivial patch to clang to account for the C++ API
change. Thanks go to Pavel Labath for fixing LLDB for me.
Reviewers: rengolin
Subscribers: jyknight, dschuff, arsenm, rampitec, danalbert, srhines, javed.absar, dsanders, echristo, emaste, jholewinski, tberghammer, ted, jfb, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D10969
llvm-svn: 247692
Summary:
This is the first patch in the series to migrate Triple's (which are ambiguous)
to TargetTuple's (which aren't).
For the moment, TargetTuple simply passes all requests to the Triple object it
holds. Once it has replaced Triple, it will start to implement the interface in
a more suitable way.
This change makes some changes to the public C++ API. In particular,
InitMCSubtargetInfo(), createMCRelocationInfo(), and createMCSymbolizer()
now take TargetTuples instead of Triples. The other public C++ API's have
been left as-is for the moment to reduce patch size.
This commit also contains a trivial patch to clang to account for the C++ API
change.
Reviewers: rengolin
Subscribers: jyknight, dschuff, arsenm, rampitec, danalbert, srhines, javed.absar, dsanders, echristo, emaste, jholewinski, tberghammer, ted, jfb, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D10969
llvm-svn: 247683
Create wrapper methods in the Function class for the OptimizeForSize and MinSize
attributes. We want to hide the logic of "or'ing" them together when optimizing
just for size (-Os).
Currently, we are not consistent about this and rely on a front-end to always set
OptimizeForSize (-Os) if MinSize (-Oz) is on. Thus, there are 18 FIXME changes here
that should be added as follow-on patches with regression tests.
This patch is NFC-intended: it just replaces existing direct accesses of the attributes
by the equivalent wrapper call.
Differential Revision: http://reviews.llvm.org/D11734
llvm-svn: 243994
This is necessary for WatchOS support, where the compact unwind format assumes
this kind of layout. For now we only want this on Swift-like CPUs though, where
it's been the Xcode behaviour for ages. Also, since it can expand the prologue
we don't want it at -Oz.
llvm-svn: 243884
This commit defines subtarget feature strict-align and uses it instead of
cl::opt -arm-strict-align to decide whether strict alignment should be
forced. Also, remove the logic that was checking the OS and architecture
as clang is now responsible for setting strict-align based on the command
line options specified and the target architecute and OS.
rdar://problem/21529937
http://reviews.llvm.org/D11470
llvm-svn: 243493
whether register r9 should be reserved.
This recommits r242737, which broke bots because the number of subtarget
features went over the limit of 64.
This change is needed because we cannot use a backend option to set
cl::opt "arm-reserve-r9" when doing LTO.
Out-of-tree projects currently using cl::opt option "-arm-reserve-r9" to
reserve r9 should make changes to add subtarget feature "reserve-r9" to
the IR.
rdar://problem/21529937
Differential Revision: http://reviews.llvm.org/D11320
llvm-svn: 242756
whether register r9 should be reserved.
This change is needed because we cannot use a backend option to set
cl::opt "arm-reserve-r9" when doing LTO.
Out-of-tree projects currently using cl::opt option "-arm-reserve-r9" to
reserve r9 should make changes to add subtarget feature "reserve-r9" to
the IR.
rdar://problem/21529937
Differential Revision: http://reviews.llvm.org/D11320
llvm-svn: 242737
Reapply r242500 now that the swift schedmodel includes LDRLIT.
This is mostly done to disable the PostRAScheduler which optimizes for
instruction latencies which isn't a good fit for out-of-order
architectures. This also allows to leave out the itinerary table in
swift in favor of the SchedModel ones.
This change leads to performance improvements/regressions by as much as
10% in some benchmarks, in fact we loose 0.4% performance over the
llvm-testsuite for reasons that appear to be unknown or out of the
compilers control. rdar://20803802 documents the investigation of
these effects.
While it is probably a good idea to perform the same switch for the
other ARM out-of-order CPUs, I limited this change to swift as I cannot
perform the benchmark verification on the other CPUs.
Differential Revision: http://reviews.llvm.org/D10513
llvm-svn: 242588
This is mostly done to disable the PostRAScheduler which optimizes for
instruction latencies which isn't a good fit for out-of-order
architectures. This also allows to leave out the itinerary table in
swift in favor of the SchedModel ones.
This change leads to performance improvements/regressions by as much as
10% in some benchmarks, in fact we loose 0.4% performance over the
llvm-testsuite for reasons that appear to be unknown or out of the
compilers control. rdar://20803802 documents the investigation of
these effects.
While it is probably a good idea to perform the same switch for the
other ARM out-of-order CPUs, I limited this change to swift as I cannot
perform the benchmark verification on the other CPUs.
Differential Revision: http://reviews.llvm.org/D10513
llvm-svn: 242500
pairs for 32-bit immediates.
This change is needed to avoid emitting movt/movw pairs when doing LTO
and do so on a per-function basis.
Out-of-tree projects currently using cl::opt option -arm-use-movt=0 or
false to avoid emitting movt/movw pairs should make changes to add
subtarget feature "+no-movt" (see the changes made to clang in r242368).
rdar://problem/21529937
Differential Revision: http://reviews.llvm.org/D11026
llvm-svn: 242369
Summary:
Remove empty subclass in the process.
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren, ted
Differential Revision: http://reviews.llvm.org/D11045
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241780
be emitted.
This is needed to enable ARM long calls for LTO and enable and disable it on a
per-function basis.
Out-of-tree projects currently using EnableARMLongCalls to emit long calls
should start passing "+long-calls" to the feature string (see the changes made
to clang in r241565).
rdar://problem/21529937
Differential Revision: http://reviews.llvm.org/D9364
llvm-svn: 241566
From the linker's perspective, an available_externally global is equivalent
to an external declaration (per isDeclarationForLinker()), so it is incorrect
to consider it to be a weak definition.
Also clean up some logic in the dead argument elimination pass and clarify
its comments to better explain how its behavior depends on linkage,
introduce GlobalValue::isStrongDefinitionForLinker() and start using
it throughout the optimizers and backend.
Differential Revision: http://reviews.llvm.org/D10941
llvm-svn: 241413
r213101 changed the behaviour of this method to not only affect the
PostMachineScheduler scheduler but also the PostRAScheduler scheduler,
renaming should make this fact clear. Also document that the preferred
way is to specify this in the scheduling model instead of overriding
this method.
Differential Revision: http://reviews.llvm.org/D10427
llvm-svn: 239659
Summary:
This continues the patch series to eliminate StringRef forms of GNU triples
from the internals of LLVM that began in r239036.
Reviewers: rafael
Reviewed By: rafael
Subscribers: rafael, ted, jfb, llvm-commits, rengolin, jholewinski
Differential Revision: http://reviews.llvm.org/D10311
llvm-svn: 239467
Previously, subtarget features were a bitfield with the underlying type being uint64_t.
Since several targets (X86 and ARM, in particular) have hit or were very close to hitting this bound, switching the features to use a bitset.
No functional change.
The first several times this was committed (e.g. r229831, r233055), it caused several buildbot failures.
Apparently the reason for most failures was both clang and gcc's inability to deal with large numbers (> 10K) of bitset constructor calls in tablegen-generated initializers of instruction info tables.
This should now be fixed.
llvm-svn: 238192
This is part of the work to remove TargetMachine::resetTargetOptions.
In this patch, instead of updating global variable NoFramePointerElim in
resetTargetOptions, its use in DisableFramePointerElim is replaced with a call
to TargetFrameLowering::noFramePointerElim. This function determines on a
per-function basis if frame pointer elimination should be disabled.
There is no change in functionality except that cl:opt option "disable-fp-elim"
can now override function attribute "no-frame-pointer-elim".
llvm-svn: 238080
Previously, subtarget features were a bitfield with the underlying type being uint64_t.
Since several targets (X86 and ARM, in particular) have hit or were very close to hitting this bound, switching the features to use a bitset.
No functional change.
The first two times this was committed (r229831, r233055), it caused several buildbot failures.
At least some of the ARM and MIPS ones were due to gcc/binutils issues, and should now be fixed.
llvm-svn: 237234
to use the information in the module rather than TargetOptions.
We've had and clang has used the use-soft-float attribute for some
time now so have the backends set a subtarget feature based on
a particular function now that subtargets are created based on
functions and function attributes.
For the one middle end soft float check go ahead and create
an overloadable TargetLowering::useSoftFloat function that
just checks the TargetSubtargetInfo in all cases.
Also remove the command line option that hard codes whether or
not soft-float is set by using the attribute for all of the
target specific test cases - for the generic just go ahead and
add the attribute in the one case that showed up.
llvm-svn: 237079
v8.1a is renamed to architecture, following current entity naming approach.
Excess generic cpu is removed. Intended use: "generic" cpu with "v8.1a" subtarget feature
Reviewers: jmolloy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8767
llvm-svn: 233811
This reverts commit r233055.
It still causes buildbot failures (gcc running out of memory on several platforms, and a self-host failure on arm), although less than the previous time.
llvm-svn: 233068
Previously, subtarget features were a bitfield with the underlying type being uint64_t.
Since several targets (X86 and ARM, in particular) have hit or were very close to hitting this bound, switching the features to use a bitset.
No functional change.
The first time this was committed (r229831), it caused several buildbot failures.
At least some of the ARM ones were due to gcc/binutils issues, and should now be fixed.
Differential Revision: http://reviews.llvm.org/D8542
llvm-svn: 233055
ARMv6K is another layer between ARMV6 and ARMV6T2. This is the LLVM
side of the changes.
ARMV6 family LLVM implementation.
+-------------------------------------+
| ARMV6 |
+----------------+--------------------+
| ARMV6M (thumb) | ARMV6K (arm,thumb) | <- From ARMV6K and ARMV6M processors
+----------------+--------------------+ have support for hint instructions
| ARMV6T2 (arm,thumb,thumb2) | (SEV/WFE/WFI/NOP/YIELD). They can
+-------------------------------------+ be either real or default to NOP.
| ARMV7 (arm,thumb,thumb2) | The two processors also use
+-------------------------------------+ different encoding for them.
Patch by Vinicius Tinti.
llvm-svn: 232468
Previously, subtarget features were a bitfield with the underlying type being uint64_t.
Since several targets (X86 and ARM, in particular) have hit or were very close to hitting this bound, switching the features to use a bitset.
No functional change.
Differential Revision: http://reviews.llvm.org/D7065
llvm-svn: 229831
Canonicalize access to function attributes to use the simpler API.
getAttributes().getAttribute(AttributeSet::FunctionIndex, Kind)
=> getFnAttribute(Kind)
getAttributes().hasAttribute(AttributeSet::FunctionIndex, Kind)
=> hasFnAttribute(Kind)
llvm-svn: 229220
derived classes.
Since global data alignment, layout, and mangling is often based on the
DataLayout, move it to the TargetMachine. This ensures that global
data is going to be layed out and mangled consistently if the subtarget
changes on a per function basis. Prior to this all targets(*) have
had subtarget dependent code moved out and onto the TargetMachine.
*One target hasn't been migrated as part of this change: R600. The
R600 port has, as a subtarget feature, the size of pointers and
this affects global data layout. I've currently hacked in a FIXME
to enable progress, but the port needs to be updated to either pass
the 64-bitness to the TargetMachine, or fix the DataLayout to
avoid subtarget dependent features.
llvm-svn: 227113
utils/sort_includes.py.
I clearly haven't done this in a while, so more changed than usual. This
even uncovered a missing include from the InstrProf library that I've
added. No functionality changed here, just mechanical cleanup of the
include order.
llvm-svn: 225974
of the abi we should be using. For targets that don't use the
option there's no change, otherwise this allows external users
to set the ABI via string and avoid some of the -backend-option
pain in clang.
Use this option to move the ABI for the ARM port from the
Subtarget to the TargetMachine and update the testcases
accordingly since it's no longer valid to set via -mattr.
llvm-svn: 224492
same. This will change the "bare metal" ABI from APCS to AAPCS.
The only difference between the front and back end code is that
the code for Triple::GNU was added for environment. That will migrate
to the front end shortly.
Tests updated with the ABI they were originally testing in the case
of bare metal (e.g. -mtriple armv7) or with a -gnu for arm-linux
triples.
llvm-svn: 224489
The distinction is mostly useful in the front-end. By the time we get here,
there are very few situations where we actually want different behaviour for
Darwin and IOS (in fact Darwin mostly just exists in a few tests). So this
should reduce any surprising weirdness for anyone using it.
No functional change on anything anyone actually cares about.
llvm-svn: 224035
This removes calls to isMaterializable in the following cases:
* It was redundant with a call to isDeclaration now that isDeclaration returns
the correct answer for materializable functions.
* It was followed by a call to Materialize. Just call Materialize and check EC.
llvm-svn: 221050
Early attempts to support AAPCS bare metal MachO targets based the decision on
the CPU being compiled for. This was not a particularly great idea and we've
got a better option now, but this check remained.
No functional change for any target we care about.
llvm-svn: 219767
Thumb1 has legitimate reasons for preferring 32-bit alignment of types
i1/i8/i16, since the 16-bit encoding of "add rD, sp, #imm" requires #imm to be
a multiple of 4. However, this is a trade-off betweem code size and RAM usage;
the DataLayout string is not the best place to represent it even if desired.
So this patch removes the extra Thumb requirements, hopefully making ARM and
Thumb completely compatible in this respect.
llvm-svn: 219734
Before, ARM and Thumb mode code had different preferred alignments, which could
lead to some rather unexpected results. There's justification for reducing it
from the default 64-bits (wasted space), but I don't think there is for going
below 32-bits.
There's no actual ABI change here, just to reassure people.
llvm-svn: 219719
This must be enforced for all v6M cores, not just the cortex-m0,
irregardless of the user-specified alignment.
Patch by Charlie Turner.
llvm-svn: 219300
This removes static initializers from the backends which generate this data, and also makes this struct match the other Tablegen generated structs in behaviour
Reviewed by Andy Trick and Chandler C
llvm-svn: 216919