is the new base of the SSA value hierarchy. This CL also standardizes all the
nomenclature and comments to use 'Value' where appropriate. This also eliminates a large number of cast<MLValue>(x)'s, which is very soothing.
This is step 11/n towards merging instructions and statements, NFC.
PiperOrigin-RevId: 227064624
This *only* changes the internal data structures, it does not affect the user visible syntax or structure of MLIR code. Function gets new "isCFG()" sorts of predicates as a transitional measure.
This patch is gross in a number of ways, largely in an effort to reduce the amount of mechanical churn in one go. It introduces a bunch of using decls to keep the old names alive for now, and a bunch of stuff needs to be renamed.
This is step 10/n towards merging instructions and statements, NFC.
PiperOrigin-RevId: 227044402
making it more similar to the CFG side of things. It is true that in a deeply
nested case that this is not a guaranteed O(1) time operation, and that 'get'
could lead compiler hackers to think this is cheap, but we need to merge these
and we can look into solutions for this in the future if it becomes a problem
in practice.
This is step 9/n towards merging instructions and statements, NFC.
PiperOrigin-RevId: 226983931
BlockArgument arguments of the entry block instead. This makes MLFunctions and
CFGFunctions work more similarly.
This is step 7/n towards merging instructions and statements, NFC.
PiperOrigin-RevId: 226966975
MLFunction, IfStmt, ForStmt even though they currently only contain exactly one
block in that list.
This is step 6/n towards merging instructions and statements, NFC.
PiperOrigin-RevId: 226960278
for SSA values in terminators, but easily worked around. At the same time,
move the StmtOperand list in a OperationStmt to the end of its trailing
objects list so we can *reduce* the number of operands, without affecting
offsets to the other stuff in the allocation.
This is important because we want OperationStmts to be consequtive, including
their operands - we don't want to use an std::vector of operands like
Instructions have.
This is patch 4/n towards merging instructions and statements, NFC.
PiperOrigin-RevId: 226865727
optional successor operands when they are terminator operations.
This isn't used yet, but is part 2/n towards merging BasicBlock into StmtBlock
and Instruction into OperationStmt.
PiperOrigin-RevId: 226684636
StmtBlock. This is more consistent with IfStmt and also conceptually makes
more sense - a forstmt "isn't" its body, it contains its body.
This is step 1/N towards merging BasicBlock and StmtBlock. This is required
because in the new regime StmtBlock will have a use list (just like BasicBlock
does) of operands, and ForStmt already has a use list for its induction
variable.
This is a mechanical patch, NFC.
PiperOrigin-RevId: 226684158
This simplifies call-sites returning true after emitting an error. After the
conversion, dropped braces around single statement blocks as that seems more
common.
Also, switched to emitError method instead of emitting Error kind using the
emitDiagnostic method.
TESTED with existing unit tests
PiperOrigin-RevId: 224527868
update/improve/clean up API.
- update FlatAffineConstraints::getConstBoundDifference; return constant
differences between symbolic affine expressions, look at equalities as well.
- fix buffer size computation when generating DMAs symbolic in outer loops,
correctly handle symbols at various places (affine access maps, loop bounds,
loop IVs outer to the depth at which DMA generation is being done)
- bug fixes / complete some TODOs for getMemRefRegion
- refactor common code b/w memref dependence check and getMemRefRegion
- FlatAffineConstraints API update; added methods employ trivial checks /
detection - sufficient to handle hyper-rectangular cases in a precise way
while being fast / low complexity. Hyper-rectangular cases fall out as
trivial cases for these methods while other cases still do not cause failure
(either return conservative or return failure that is handled by the caller).
PiperOrigin-RevId: 224229879
Value type abstraction for locations differ from others in that a Location can NOT be null. NOTE: dyn_cast returns an Optional<T>.
PiperOrigin-RevId: 220682078
This is done by changing Type to be a POD interface around an underlying pointer storage and adding in-class support for isa/dyn_cast/cast.
PiperOrigin-RevId: 219372163
Statement, which paves the way to make SSAValue's have a useful owner
available, which will allow subsequent patches to improve their use/def
chains.
While I'm poking at this, shrink sizeof(Instruction) and sizeof(Statement) by a
word by packing the kind and location together into a single PointerIntPair.
NFC.
PiperOrigin-RevId: 218959651
is a straight-forward change, but required adding missing moveBefore() methods
on operations (requiring moving some traits around to make C++ happy). This
also fixes a constness issue with the getBlock/getFunction() methods on
Instruction, and adds a missing getFunction() method on MLFuncBuilder.
PiperOrigin-RevId: 218523905
Also rename Operation::is to Operation::isa
Introduce Operation::cast
All of these are for consistency with global dyn_cast/cast/isa operators.
PiperOrigin-RevId: 217878786
* Move Return, Constant and AffineApply out into BuiltinOps;
* BuiltinOps are always registered, while StandardOps follow the same dynamic registration;
* Kept isValidX in MLValue as we don't have a verify on AffineMap so need to keep it callable from Parser (I wanted to move it to be called in verify instead);
PiperOrigin-RevId: 216592527
This CL applies the same pattern as AffineMap to IntegerSet: a simple struct
that acts as the storage is allocated in the bump pointer. The IntegerSet is
immutable and accessed everywhere by value.
Note that unlike AffineMap, it is not possible to remove the MLIRContext
parameter when constructing an IntegerSet for now. One possible way to achieve
this would be to add an enum to distinguish between the mathematically empty
set, the universe set and other sets.
This is left for future discussion.
PiperOrigin-RevId: 216545361
AbstractOperation* or an Identifier. This makes it possible to get to stuff in
AbstractOperation faster than going through a hash table lookup. This makes
constant folding a bit faster now, but will become more important with
subsequent changes.
PiperOrigin-RevId: 216476772
This CL applies the same pattern as AffineExpr to AffineMap: a simple struct
that acts as the storage is allocated in the bump pointer. The AffineMap is
immutable and accessed everywhere by value.
PiperOrigin-RevId: 216445930
1) affineint (as it is named) is not a type suitable for general computation (e.g. the multiply/adds in an integer matmul). It has undefined width and is undefined on overflow. They are used as the indices for forstmt because they are intended to be used as indexes inside the loop.
2) It can be used in both cfg and ml functions, and in cfg functions. As you mention, “symbols” are not affine, and we use affineint values for symbols.
3) Integers aren’t affine, the algorithms applied to them can be. :)
4) The only suitable use for affineint in MLIR is for indexes and dimension sizes (i.e. the bounds of those indexes).
PiperOrigin-RevId: 216057974
- Fold the lower/upper bound of a loop to a constant whenever the result of the
application of the bound's affine map on the operand list yields a constant.
- Update/complete 'for' stmt's API to set lower/upper bounds with operands.
Resolve TODOs for ForStmt::set{Lower,Upper}Bound.
- Moved AffineExprConstantFolder into AffineMap.cpp and added
AffineMap::constantFold to be used by both AffineApplyOp and
ForStmt::constantFoldBound.
PiperOrigin-RevId: 215997346
- extend loop unroll-jam similar to loop unroll for affine bounds
- extend both loop unroll/unroll-jam to deal with cleanup loop for non multiple
of unroll factor.
- extend promotion of single iteration loops to work with affine bounds
- fix typo bugs in loop unroll
- refactor common code b/w loop unroll and loop unroll-jam
- move prototypes of non-pass transforms to LoopUtils.h
- add additional builder methods.
- introduce loopUnrollUpTo(factor) to unroll by either factor or trip count,
whichever is less.
- remove Statement::isInnermost (not used for now - will come back at the right
place/in right form later)
PiperOrigin-RevId: 213471227
Use these methods to simplify existing code. Rename getConstantMap
getConstantAffineMap. Move declarations to group similar ones together.
PiperOrigin-RevId: 212814829
unroll/unroll-and-jam more powerful; add additional affine expr builder methods
- use previously added analysis/simplification to infer multiple of unroll
factor trip counts, making loop unroll/unroll-and-jam more general.
- for loop unroll, support bounds that are single result affine map's with the
same set of operands. For unknown loop bounds, loop unroll will now work as
long as trip count can be determined to be a multiple of unroll factor.
- extend getConstantTripCount to deal with single result affine map's with the
same operands. move it to mlir/Analysis/LoopAnalysis.cpp
- add additional builder utility methods for affine expr arithmetic
(difference, mod/floordiv/ceildiv w.r.t postitive constant). simplify code to
use the utility methods.
- move affine analysis routines to AffineAnalysis.cpp/.h from
AffineStructures.cpp/.h.
- Rename LoopUnrollJam to LoopUnrollAndJam to match class name.
- add an additional simplification for simplifyFloorDiv, simplifyCeilDiv
- Rename AffineMap::getNumOperands() getNumInputs: an affine map by itself does
not have operands. Operands are passed to it through affine_apply, from loop
bounds/if condition's, etc., operands are stored in the latter.
This should be sufficiently powerful for now as far as unroll/unroll-and-jam go for TPU
code generation, and can move to other analyses/transformations.
Loop nests like these are now unrolled without any cleanup loop being generated.
for %i = 1 to 100 {
// unroll factor 4: no cleanup loop will be generated.
for %j = (d0) -> (d0) (%i) to (d0) -> (5*d0 + 3) (%i) {
%x = "foo"(%j) : (affineint) -> i32
}
}
for %i = 1 to 100 {
// unroll factor 4: no cleanup loop will be generated.
for %j = (d0) -> (d0) (%i) to (d0) -> (d0 - d mod 4 - 1) (%i) {
%y = "foo"(%j) : (affineint) -> i32
}
}
for %i = 1 to 100 {
for %j = (d0) -> (d0) (%i) to (d0) -> (d0 + 128) (%i) {
%x = "foo"() : () -> i32
}
}
TODO(bondhugula): extend this to LoopUnrollAndJam as well in the next CL (with minor
changes).
PiperOrigin-RevId: 212661212
loop counts. Improve / refactor loop unroll / loop unroll and jam.
- add utility to remove single iteration loops.
- use this utility to promote single iteration loops after unroll/unroll-and-jam
- use loopUnrollByFactor for loopUnrollFull and remove most of the latter.
- add methods for getting constant loop trip count
PiperOrigin-RevId: 212039569
Restored the order of deleting then-clause before else-clause in if-statement destructor, since it does not and should not matter.
PiperOrigin-RevId: 211273720
This CL also includes two other minor changes:
- change the implemented syntax from 'if (cond)' to 'if cond', as specified by MLIR spec.
- a minor fix to the implementation of the ForStmt.
PiperOrigin-RevId: 210618122
(and more useful) way rather than hacking up a pile of attributes for it. In
the future this will grow to represent inlined locations, fusion cases etc, but
for now we start with simple Unknown and File/Line/Col locations. NFC.
PiperOrigin-RevId: 210485775
This revamps implementation of the loop bounds in the ForStmt, using general representation that supports operands. The frequent case of constant bounds is supported
via special access methods.
This also includes:
- Operand iterators for the Statement class.
- OpPointer::is() method to query the class of the Operation.
- Support for the bound shorthand notation parsing and printing.
- Validity checks for the bound operands used as dim ids and symbols
I didn't mean this CL to be so large. It just happened this way, as one thing led to another.
PiperOrigin-RevId: 210204858
operation and statement to have a location, and make it so a location is
required to be specified whenever you make one (though a null location is still
allowed). This is to encourage compiler authors to propagate loc info
properly, allowing our failability story to work well.
This is still a WIP - it isn't clear if we want to continue abusing Attribute
for location information, or whether we should introduce a new class heirarchy
to do so. This is good step along the way, and unblocks some of the tf/xla
work that builds upon it.
PiperOrigin-RevId: 210001406
an operand mapping, which simplifies it a bit. Implement cloning for IfStmt,
rename getThenClause() to getThen() which is unambiguous and less repetitive in
use cases.
PiperOrigin-RevId: 207915990
- introduce affine integer sets into the IR
- parse and print affine integer sets (both inline or outlined) similar to
affine maps
- use integer set for IfStmt's conditional, and implement parsing of IfStmt's
conditional
- fixed an affine expr paren omission bug while one this.
TODO: parse/represent/print MLValue operands to affine integer set references.
PiperOrigin-RevId: 207779408
- fix/complete forStmt cloning for unrolling to work for outer loops
- create IV const's only when needed
- test outer loop unrolling by creating a short trip count unroll pass for
loops with trip counts <= <parameter>
- add unrolling test cases for multiple op results, outer loop unrolling
- fix/clean up StmtWalker class while on this
- switch unroll loop iterator values from i32 to affineint
PiperOrigin-RevId: 207645967
Unrelated minor change - remove OperationStmt::dropReferences(). Since MLFunction does not have cyclic operand references (it's an AST) destruction can be safely done w/o a special pass to drop references.
PiperOrigin-RevId: 207583024
- deal with non-operation stmt's (if/for stmt's) in loops being unrolled
(unrolling of non-innermost loops works).
- update uses in unrolled bodies to use results of new operations that may be
introduced in the unrolled bodies.
Unrolling now works for all kinds of loop nests - perfect nests, imperfect
nests, loops at any depth, and with any kind of operation in the body. (IfStmt
support not done, hence untested there).
Added missing dump/print method for StmtBlock.
TODO: add test case for outer loop unrolling.
PiperOrigin-RevId: 207314286
MLFunctions.
- MLStmt cloning and IV replacement
- While at this, fix the innermostLoopGatherer to actually gather all the
innermost loops (it was stopping its walk at the first innermost loop it
found)
- Improve comments for MLFunction statement classes, fix inheritance order.
- Fixed StmtBlock destructor.
PiperOrigin-RevId: 207049173
generalize the asmprinters handling of pretty names to allow arbitrary sugar to
be dumped on various constructs. Give CFG function arguments nice "arg0" names
like MLFunctions get, and give constant integers pretty names like %c37 for a
constant 377
PiperOrigin-RevId: 206953080
handlers and to feed them with errors and warnings produced by the compiler.
Enhance Operation to be able to get its own MLIRContext on demand, simplifying
some clients. Change the verifier to emit certain errors with the diagnostic
handler.
This is steps towards reworking the verifier and diagnostic propagation but is
itself not particularly useful. More to come.
PiperOrigin-RevId: 206948643
Fix b/112039912 - we were recording 'i' instead of '%i' for loop induction variables causing "use of undefined SSA value" error.
PiperOrigin-RevId: 206884644