There's a few relevant forward declarations in there that may require downstream
adding explicit includes:
llvm/MC/MCContext.h no longer includes llvm/BinaryFormat/ELF.h, llvm/MC/MCSubtargetInfo.h, llvm/MC/MCTargetOptions.h
llvm/MC/MCObjectStreamer.h no longer include llvm/MC/MCAssembler.h
llvm/MC/MCAssembler.h no longer includes llvm/MC/MCFixup.h, llvm/MC/MCFragment.h
Counting preprocessed lines required to rebuild llvm-project on my setup:
before: 1052436830
after: 1049293745
Which is significant and backs up the change in addition to the usual benefits of
decreasing coupling between headers and compilation units.
Discourse thread: https://discourse.llvm.org/t/include-what-you-use-include-cleanup
Differential Revision: https://reviews.llvm.org/D119244
This patch add support relocation offset of sym+constant(like `foo+4`) form for pending fixup.
In the past, llvm-mc ignored the constant in sym+constant form, for `foo+4`, `4` would be ignored. And test case
```
.text
ret
nop
nop
.reloc foo+4, R_RISCV_32, 6
.data
.globl foo
foo:
.word 0
.word 0
.word 0
```
when run `llvm-mc -filetype=obj -triple=riscv64 %s | llvm-readobj -r`
The output is
```
Relocations [
Section (3) .rela.text {
0x0 R_RISCV_32 - 0x6
}
]
```
After applying this patch, the output is
```
Relocations [
Section (3) .rela.text {
0x4 R_RISCV_32 - 0x6
}
]
```
Differential Revision: https://reviews.llvm.org/D117316
Inline assembly refererences to static functions with ThinLTO+CFI were
fixed in D104058 by creating aliases for promoted functions. Creating
the aliases unconditionally resulted in an unexpected size increase in
a Chrome helper binary:
https://bugs.chromium.org/p/chromium/issues/detail?id=1261715
This is caused by the compiler being unable to drop unused code now
referenced by the alias in module-level inline assembly. This change
adds a .set_conditional assembly extension, which emits an assignment
only if the target symbol is also emitted, avoiding phantom references
to functions that could have otherwise been dropped.
This is an alternative to the solution proposed in D112761.
Reviewed By: pcc, nickdesaulniers, MaskRay
Differential Revision: https://reviews.llvm.org/D113613
On some architectures such as Arm and X86 the encoding for a nop may
change depending on the subtarget in operation at the time of
encoding. This change replaces the per module MCSubtargetInfo retained
by the targets AsmBackend in favour of passing through the local
MCSubtargetInfo in operation at the time.
On Arm using the architectural NOP instruction can have a performance
benefit on some implementations.
For Arm I've deleted the copy of the AsmBackend's MCSubtargetInfo to
limit the chances of this causing problems in the future. I've not
done this for other targets such as X86 as there is more frequent use
of the MCSubtargetInfo and it looks to be for stable properties that
we would not expect to vary per function.
This change required threading STI through MCNopsFragment and
MCBoundaryAlignFragment.
I've attempted to take into account the in tree experimental backends.
Differential Revision: https://reviews.llvm.org/D45962
In preparation for passing the MCSubtargetInfo (STI) through to writeNops
so that it can use the STI in operation at the time, we need to record the
STI in operation when a MCAlignFragment may write nops as padding. The
STI is currently unused, a further patch will pass it through to
writeNops.
There are many places that can create an MCAlignFragment, in most cases
we can find out the STI in operation at the time. In a few places this
isn't possible as we are in initialisation or finalisation, or are
emitting constant pools. When possible I've tried to find the most
appropriate existing fragment to obtain the STI from, when none is
available use the per module STI.
For constant pools we don't actually need to use EmitCodeAlign as the
constant pools are data anyway so falling through into it via an
executable NOP is no better than falling through into data padding.
This is a prerequisite for D45962 which uses the STI to emit the
appropriate NOP for the STI. Which can differ per fragment.
Note that involves an interface change to InitSections. It is now
called initSections and requires a SubtargetInfo as a parameter.
Differential Revision: https://reviews.llvm.org/D45961
This re-architects the RISCV relocation handling to bring the
implementation closer in line with the implementation in binutils. We
would previously aggressively resolve the relocation. With this
restructuring, we always will emit a paired relocation for any symbolic
difference of the type of S±T[±C] where S and T are labels and C is a
constant.
GAS has a special target hook controlled by `RELOC_EXPANSION_POSSIBLE`
which indicates that a fixup may be expanded into multiple relocations.
This is used by the RISCV backend to always emit a paired relocation -
either ADD[WIDTH] + SUB[WIDTH] for text relocations or SET[WIDTH] +
SUB[WIDTH] for a debug info relocation. Irrespective of whether linker
relaxation support is enabled, symbolic difference is always emitted as
a paired relocation.
This change also sinks the target specific behaviour down into the
target specific area rather than exposing it to the shared relocation
handling. In the process, we also sink the "special" handling for debug
information down into the RISCV target. Although this improves the path
for the other targets, this is not necessarily entirely ideal either.
The changes in the debug info emission could be done through another
type of hook as this functionality would be required by any other target
which wishes to do linker relaxation. However, as there are no other
targets in LLVM which currently do this, this is a reasonable thing to
do until such time as the code needs to be shared.
Improve the handling of the relocation (and add a reduced test case from
the Linux kernel) to ensure that we handle complex expressions for
symbolic difference. This ensures that we correct relocate symbols with
the adddends normalized and associated with the addition portion of the
paired relocation.
This change also addresses some review comments from Alex Bradbury about
the relocations meant for use in the DWARF CFA being named incorrectly
(using ADD6 instead of SET6) in the original change which introduced the
relocation type.
This resolves the issues with the symbolic difference emission
sufficiently to enable building the Linux kernel with clang+IAS+lld
(without linker relaxation).
Resolves PR50153, PR50156!
Fixes: ClangBuiltLinux/linux#1023, ClangBuiltLinux/linux#1143
Reviewed By: nickdesaulniers, maskray
Differential Revision: https://reviews.llvm.org/D103539
CanBeUnnamed is rarely false. Splitting to a createNamedTempSymbol makes the
intention clearer and matches the direction of reverted r240130 (to drop the
unneeded parameters).
No behavior change.
This change implements pseudo probe encoding and emission for CSSPGO. Please see RFC here for more context: https://groups.google.com/g/llvm-dev/c/1p1rdYbL93s
Pseudo probes are in the form of intrinsic calls on IR/MIR but they do not turn into any machine instructions. Instead they are emitted into the binary as a piece of data in standalone sections. The probe-specific sections are not needed to be loaded into memory at execution time, thus they do not incur a runtime overhead.
**ELF object emission**
The binary data to emit are organized as two ELF sections, i.e, the `.pseudo_probe_desc` section and the `.pseudo_probe` section. The `.pseudo_probe_desc` section stores a function descriptor for each function and the `.pseudo_probe` section stores the actual probes, each fo which corresponds to an IR basic block or an IR function callsite. A function descriptor is stored as a module-level metadata during the compilation and is serialized into the object file during object emission.
Both the probe descriptors and pseudo probes can be emitted into a separate ELF section per function to leverage the linker for deduplication. A `.pseudo_probe` section shares the same COMDAT group with the function code so that when the function is dead, the probes are dead and disposed too. On the contrary, a `.pseudo_probe_desc` section has its own COMDAT group. This is because even if a function is dead, its probes may be inlined into other functions and its descriptor is still needed by the profile generation tool.
The format of `.pseudo_probe_desc` section looks like:
```
.section .pseudo_probe_desc,"",@progbits
.quad 6309742469962978389 // Func GUID
.quad 4294967295 // Func Hash
.byte 9 // Length of func name
.ascii "_Z5funcAi" // Func name
.quad 7102633082150537521
.quad 138828622701
.byte 12
.ascii "_Z8funcLeafi"
.quad 446061515086924981
.quad 4294967295
.byte 9
.ascii "_Z5funcBi"
.quad -2016976694713209516
.quad 72617220756
.byte 7
.ascii "_Z3fibi"
```
For each `.pseudoprobe` section, the encoded binary data consists of a single function record corresponding to an outlined function (i.e, a function with a code entry in the `.text` section). A function record has the following format :
```
FUNCTION BODY (one for each outlined function present in the text section)
GUID (uint64)
GUID of the function
NPROBES (ULEB128)
Number of probes originating from this function.
NUM_INLINED_FUNCTIONS (ULEB128)
Number of callees inlined into this function, aka number of
first-level inlinees
PROBE RECORDS
A list of NPROBES entries. Each entry contains:
INDEX (ULEB128)
TYPE (uint4)
0 - block probe, 1 - indirect call, 2 - direct call
ATTRIBUTE (uint3)
reserved
ADDRESS_TYPE (uint1)
0 - code address, 1 - address delta
CODE_ADDRESS (uint64 or ULEB128)
code address or address delta, depending on ADDRESS_TYPE
INLINED FUNCTION RECORDS
A list of NUM_INLINED_FUNCTIONS entries describing each of the inlined
callees. Each record contains:
INLINE SITE
GUID of the inlinee (uint64)
ID of the callsite probe (ULEB128)
FUNCTION BODY
A FUNCTION BODY entry describing the inlined function.
```
To support building a context-sensitive profile, probes from inlinees are grouped by their inline contexts. An inline context is logically a call path through which a callee function lands in a caller function. The probe emitter builds an inline tree based on the debug metadata for each outlined function in the form of a trie tree. A tree root is the outlined function. Each tree edge stands for a callsite where inlining happens. Pseudo probes originating from an inlinee function are stored in a tree node and the tree path starting from the root all the way down to the tree node is the inline context of the probes. The emission happens on the whole tree top-down recursively. Probes of a tree node will be emitted altogether with their direct parent edge. Since a pseudo probe corresponds to a real code address, for size savings, the address is encoded as a delta from the previous probe except for the first probe. Variant-sized integer encoding, aka LEB128, is used for address delta and probe index.
**Assembling**
Pseudo probes can be printed as assembly directives alternatively. This allows for good assembly code readability and also provides a view of how optimizations and pseudo probes affect each other, especially helpful for diff time assembly analysis.
A pseudo probe directive has the following operands in order: function GUID, probe index, probe type, probe attributes and inline context. The directive is generated by the compiler and can be parsed by the assembler to form an encoded `.pseudoprobe` section in the object file.
A example assembly looks like:
```
foo2: # @foo2
# %bb.0: # %bb0
pushq %rax
testl %edi, %edi
.pseudoprobe 837061429793323041 1 0 0
je .LBB1_1
# %bb.2: # %bb2
.pseudoprobe 837061429793323041 6 2 0
callq foo
.pseudoprobe 837061429793323041 3 0 0
.pseudoprobe 837061429793323041 4 0 0
popq %rax
retq
.LBB1_1: # %bb1
.pseudoprobe 837061429793323041 5 1 0
callq *%rsi
.pseudoprobe 837061429793323041 2 0 0
.pseudoprobe 837061429793323041 4 0 0
popq %rax
retq
# -- End function
.section .pseudo_probe_desc,"",@progbits
.quad 6699318081062747564
.quad 72617220756
.byte 3
.ascii "foo"
.quad 837061429793323041
.quad 281547593931412
.byte 4
.ascii "foo2"
```
With inlining turned on, the assembly may look different around %bb2 with an inlined probe:
```
# %bb.2: # %bb2
.pseudoprobe 837061429793323041 3 0
.pseudoprobe 6699318081062747564 1 0 @ 837061429793323041:6
.pseudoprobe 837061429793323041 4 0
popq %rax
retq
```
**Disassembling**
We have a disassembling tool (llvm-profgen) that can display disassembly alongside with pseudo probes. So far it only supports ELF executable file.
An example disassembly looks like:
```
00000000002011a0 <foo2>:
2011a0: 50 push rax
2011a1: 85 ff test edi,edi
[Probe]: FUNC: foo2 Index: 1 Type: Block
2011a3: 74 02 je 2011a7 <foo2+0x7>
[Probe]: FUNC: foo2 Index: 3 Type: Block
[Probe]: FUNC: foo2 Index: 4 Type: Block
[Probe]: FUNC: foo Index: 1 Type: Block Inlined: @ foo2:6
2011a5: 58 pop rax
2011a6: c3 ret
[Probe]: FUNC: foo2 Index: 2 Type: Block
2011a7: bf 01 00 00 00 mov edi,0x1
[Probe]: FUNC: foo2 Index: 5 Type: IndirectCall
2011ac: ff d6 call rsi
[Probe]: FUNC: foo2 Index: 4 Type: Block
2011ae: 58 pop rax
2011af: c3 ret
```
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D91878
This change implements pseudo probe encoding and emission for CSSPGO. Please see RFC here for more context: https://groups.google.com/g/llvm-dev/c/1p1rdYbL93s
Pseudo probes are in the form of intrinsic calls on IR/MIR but they do not turn into any machine instructions. Instead they are emitted into the binary as a piece of data in standalone sections. The probe-specific sections are not needed to be loaded into memory at execution time, thus they do not incur a runtime overhead.
**ELF object emission**
The binary data to emit are organized as two ELF sections, i.e, the `.pseudo_probe_desc` section and the `.pseudo_probe` section. The `.pseudo_probe_desc` section stores a function descriptor for each function and the `.pseudo_probe` section stores the actual probes, each fo which corresponds to an IR basic block or an IR function callsite. A function descriptor is stored as a module-level metadata during the compilation and is serialized into the object file during object emission.
Both the probe descriptors and pseudo probes can be emitted into a separate ELF section per function to leverage the linker for deduplication. A `.pseudo_probe` section shares the same COMDAT group with the function code so that when the function is dead, the probes are dead and disposed too. On the contrary, a `.pseudo_probe_desc` section has its own COMDAT group. This is because even if a function is dead, its probes may be inlined into other functions and its descriptor is still needed by the profile generation tool.
The format of `.pseudo_probe_desc` section looks like:
```
.section .pseudo_probe_desc,"",@progbits
.quad 6309742469962978389 // Func GUID
.quad 4294967295 // Func Hash
.byte 9 // Length of func name
.ascii "_Z5funcAi" // Func name
.quad 7102633082150537521
.quad 138828622701
.byte 12
.ascii "_Z8funcLeafi"
.quad 446061515086924981
.quad 4294967295
.byte 9
.ascii "_Z5funcBi"
.quad -2016976694713209516
.quad 72617220756
.byte 7
.ascii "_Z3fibi"
```
For each `.pseudoprobe` section, the encoded binary data consists of a single function record corresponding to an outlined function (i.e, a function with a code entry in the `.text` section). A function record has the following format :
```
FUNCTION BODY (one for each outlined function present in the text section)
GUID (uint64)
GUID of the function
NPROBES (ULEB128)
Number of probes originating from this function.
NUM_INLINED_FUNCTIONS (ULEB128)
Number of callees inlined into this function, aka number of
first-level inlinees
PROBE RECORDS
A list of NPROBES entries. Each entry contains:
INDEX (ULEB128)
TYPE (uint4)
0 - block probe, 1 - indirect call, 2 - direct call
ATTRIBUTE (uint3)
reserved
ADDRESS_TYPE (uint1)
0 - code address, 1 - address delta
CODE_ADDRESS (uint64 or ULEB128)
code address or address delta, depending on ADDRESS_TYPE
INLINED FUNCTION RECORDS
A list of NUM_INLINED_FUNCTIONS entries describing each of the inlined
callees. Each record contains:
INLINE SITE
GUID of the inlinee (uint64)
ID of the callsite probe (ULEB128)
FUNCTION BODY
A FUNCTION BODY entry describing the inlined function.
```
To support building a context-sensitive profile, probes from inlinees are grouped by their inline contexts. An inline context is logically a call path through which a callee function lands in a caller function. The probe emitter builds an inline tree based on the debug metadata for each outlined function in the form of a trie tree. A tree root is the outlined function. Each tree edge stands for a callsite where inlining happens. Pseudo probes originating from an inlinee function are stored in a tree node and the tree path starting from the root all the way down to the tree node is the inline context of the probes. The emission happens on the whole tree top-down recursively. Probes of a tree node will be emitted altogether with their direct parent edge. Since a pseudo probe corresponds to a real code address, for size savings, the address is encoded as a delta from the previous probe except for the first probe. Variant-sized integer encoding, aka LEB128, is used for address delta and probe index.
**Assembling**
Pseudo probes can be printed as assembly directives alternatively. This allows for good assembly code readability and also provides a view of how optimizations and pseudo probes affect each other, especially helpful for diff time assembly analysis.
A pseudo probe directive has the following operands in order: function GUID, probe index, probe type, probe attributes and inline context. The directive is generated by the compiler and can be parsed by the assembler to form an encoded `.pseudoprobe` section in the object file.
A example assembly looks like:
```
foo2: # @foo2
# %bb.0: # %bb0
pushq %rax
testl %edi, %edi
.pseudoprobe 837061429793323041 1 0 0
je .LBB1_1
# %bb.2: # %bb2
.pseudoprobe 837061429793323041 6 2 0
callq foo
.pseudoprobe 837061429793323041 3 0 0
.pseudoprobe 837061429793323041 4 0 0
popq %rax
retq
.LBB1_1: # %bb1
.pseudoprobe 837061429793323041 5 1 0
callq *%rsi
.pseudoprobe 837061429793323041 2 0 0
.pseudoprobe 837061429793323041 4 0 0
popq %rax
retq
# -- End function
.section .pseudo_probe_desc,"",@progbits
.quad 6699318081062747564
.quad 72617220756
.byte 3
.ascii "foo"
.quad 837061429793323041
.quad 281547593931412
.byte 4
.ascii "foo2"
```
With inlining turned on, the assembly may look different around %bb2 with an inlined probe:
```
# %bb.2: # %bb2
.pseudoprobe 837061429793323041 3 0
.pseudoprobe 6699318081062747564 1 0 @ 837061429793323041:6
.pseudoprobe 837061429793323041 4 0
popq %rax
retq
```
**Disassembling**
We have a disassembling tool (llvm-profgen) that can display disassembly alongside with pseudo probes. So far it only supports ELF executable file.
An example disassembly looks like:
```
00000000002011a0 <foo2>:
2011a0: 50 push rax
2011a1: 85 ff test edi,edi
[Probe]: FUNC: foo2 Index: 1 Type: Block
2011a3: 74 02 je 2011a7 <foo2+0x7>
[Probe]: FUNC: foo2 Index: 3 Type: Block
[Probe]: FUNC: foo2 Index: 4 Type: Block
[Probe]: FUNC: foo Index: 1 Type: Block Inlined: @ foo2:6
2011a5: 58 pop rax
2011a6: c3 ret
[Probe]: FUNC: foo2 Index: 2 Type: Block
2011a7: bf 01 00 00 00 mov edi,0x1
[Probe]: FUNC: foo2 Index: 5 Type: IndirectCall
2011ac: ff d6 call rsi
[Probe]: FUNC: foo2 Index: 4 Type: Block
2011ae: 58 pop rax
2011af: c3 ret
```
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D91878
When the compiler generates a GOT indirect load it must generate two loads. One
that loads the address of the element from the GOT and a second to load the
actual element based on the address just loaded from the GOT. However, the
linker can optimize these two loads into one load if it knows that it is safe
to do so. The compiler can tell the linker that the optimization is safe
by using the R_PPC64_PCREL_OPT relocation.
This patch extends the .reloc directive to allow the following setup
pld 3, vec@got@pcrel(0), 1
.Lpcrel1=.-8
... More instructions possible here ...
.reloc .Lpcrel1,R_PPC64_PCREL_OPT,.-.Lpcrel1
lwa 3, 4(3)
Reviewers: nemanjai, lei, hfinkel, sfertile, efriedma, tstellar, grosbach, MaskRay
Reviewed By: nemanjai, MaskRay
Differential Revision: https://reviews.llvm.org/D79625
For `.reloc offset, *, *`, currently offset can be a constant or symbol.
This patch makes it support any expression which can be folded to sym+constant.
Reviewed By: stefanp
Differential Revision: https://reviews.llvm.org/D83751
Summary:
Before this patch, `relaxInstruction` takes three arguments, the first
argument refers to the instruction before relaxation and the third
argument is the output instruction after relaxation. There are two quite
strange things:
1) The first argument's type is `const MCInst &`, the third
argument's type is `MCInst &`, but they may be aliased to the same
variable
2) The backends of ARM, AMDGPU, RISC-V, Hexagon assume that the third
argument is a fresh uninitialized `MCInst` even if `relaxInstruction`
may be called like `relaxInstruction(Relaxed, STI, Relaxed)` in a
loop.
In this patch, we drop the thrid argument, and let `relaxInstruction`
directly modify the given instruction. Also, this patch fixes the bug https://bugs.llvm.org/show_bug.cgi?id=45580, which is introduced by D77851, and
breaks the assumption of ARM, AMDGPU, RISC-V, Hexagon.
Reviewers: Razer6, MaskRay, jyknight, asb, luismarques, enderby, rtaylor, colinl, bcain
Reviewed By: Razer6, MaskRay, bcain
Subscribers: bcain, nickdesaulniers, nathanchance, wuzish, annita.zhang, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, tpr, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78364
For `.bss; nop`, MC inappropriately calls abort() (via report_fatal_error()) with a message
`cannot have fixups in virtual section!`
It is a bug to crash for invalid user input. Fix it by erroring out early in EmitInstToData().
Similarly, emitIntValue() in a virtual section (SHT_NOBITS in ELF) can crash with the mssage
`non-zero initializer found in section '.bss'` (see D4199)
It'd be nice to report the location but so many directives can call emitIntValue()
and it is difficult to track every location.
Note, COFF does not crash because MCAssembler::writeSectionData() is not
called for an IMAGE_SCN_CNT_UNINITIALIZED_DATA section.
Note, GNU as' arm64 backend reports ``Error: attempt to store non-zero value in section `.bss'``
for a non-zero .inst but fails to do so for other instructions.
We simply reject all instructions, even if the encoding is all zeros.
The Mach-O counterpart is D48517 (see `test/MC/MachO/zerofill-text.s`)
Reviewed By: rnk, skan
Differential Revision: https://reviews.llvm.org/D78138
Summary: We allow non-relaxable instructions emitted into relaxable Fragment when we prefix padding branch. So we need to check if the instruction need relaxation before relaxing it. Without this patch, it currently triggers a `report_fatal_error` in `llvm::MCAsmBackend::relaxInstruction` when we prefix padding branch along with `--mc-relax-all`.
Reviewers: LuoYuanke, reames, MaskRay
Reviewed By: MaskRay
Subscribers: MaskRay, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77851
Summary:
Since D75300 has been landed, I want to support enhanced relaxation when we need to align branches and allow prefix padding. "Enhanced Relaxtion" means we allow an instruction that could not be traditionally relaxed to be emitted into RelaxableFragment so that we increase its length by adding prefixes for optimization.
The motivation is straightforward, RelaxFragment is mostly for relative jumps and we can not increase the length of jumps when we need to align them, so if we need to achieve D75300's purpose (reducing the bytes of nops) when need to align jumps, we have to make more instructions "relaxable".
Reviewers: reames, MaskRay, craig.topper, LuoYuanke, jyknight
Reviewed By: reames
Subscribers: hiraditya, llvm-commits, annita.zhang
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76286
alignBranches is X86 specific, change the name in a
more general one since other target can do some state
chang before and after emitting the instruction.
Summary:
Currently, a BoundaryAlign fragment may be inserted after the branch
that needs to be aligned to truncate the current fragment, this fragment is
unused at most of time. To avoid that, we can insert a new empty Data
fragment instead. Non-relaxable instruction is usually emitted into Data
fragment, so the inserted empty Data fragment will be reused at a high
possibility.
Reviewers: annita.zhang, reames, MaskRay, craig.topper, LuoYuanke, jyknight
Reviewed By: reames, LuoYuanke
Subscribers: llvm-commits, dexonsmith, hiraditya
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75438
MCObjectStreamer is more suitable to create fragments than
X86AsmBackend, for example, the function getOrCreateDataFragment is
defined in MCObjectStreamer.
Differential Revision: https://reviews.llvm.org/D75351
As discussed heavily in the original review (D70157), there's a need for the compiler to be able to selective suppress padding (either nop or prefix) to respect assumptions about the meaning of labels and instructions in generated code.
Rather than wait for syntax to be finalized - which appears to be a very slow process - this patch focuses on the compiler use case and *only* worries about the integrated assembler. To my knowledge, this covers all cases mentioned to date for clang/JIT support.
For testing purposes, I wired it up so that if the integrated assembler was using autopadding for branch alignment (e.g. enabled at command line) then the textual assembly output would contain a comment for each location where padding was enabled or disabled. This seemed like the least painful choice overall.
Note that the result of this patch effective disables the jcc errata mitigation for many constructs (statepoints, implicit null checks, xray, etc...) which is non ideal. It is at least *correct* and should allow us to enable the mitigation for the compiler. Once that's done, and a few other items are worked through, we probably want to come back to this an explore a bundling based approach instead so that we can pad instructions while keeping labels in the right place.
Differential Revision: https://reviews.llvm.org/D72303
This simplifies the generic interface and also makes SHF_ARM_PURECODE
more robust (fixes a TODO). Inspecting MCDataFragment contents covers
more cases than MCObjectStreamer::EmitBytes.
WARNING: If you're looking at this patch because you're looking for a full
performace mitigation of the Intel JCC Erratum, this is not it!
This is a preliminary patch on the patch towards mitigating the performance
regressions caused by Intel's microcode update for Jump Conditional Code
Erratum. For context, see:
https://www.intel.com/content/www/us/en/support/articles/000055650.html
The patch adds the required assembler infrastructure and command line options
needed to exercise the logic for INTERNAL TESTING. These are NOT public flags,
and should not be used for anything other than LLVM's own testing/debugging
purposes. They are likely to change both in spelling and meaning.
WARNING: This patch is knowingly incorrect in some cornercases. We need, and
do not yet provide, a mechanism to selective enable/disable the padding.
Conversation on this will continue in parellel with work on extending this
infrastructure to support prefix padding.
The goal here is to have the assembler align specific instructions such that
they neither cross or end at a 32 byte boundary. The impacted instructions are:
a. Conditional jump.
b. Fused conditional jump.
c. Unconditional jump.
d. Indirect jump.
e. Ret.
f. Call.
The new options for llvm-mc are:
-x86-align-branch-boundary=NUM aligns branches within NUM byte boundary.
-x86-align-branch=TYPE[+TYPE...] specifies types of branches to align.
A new MCFragment type, MCBoundaryAlignFragment, is added, which may emit
NOP to align the fused/unfused branch.
alignBranchesBegin inserts MCBoundaryAlignFragment before instructions,
alignBranchesEnd marks the end of the branch to be aligned,
relaxBoundaryAlign grows or shrinks sizes of NOP to align the target branch.
Nop padding is disabled when the instruction may be rewritten by the linker,
such as TLS Call.
Process Note: I am landing a patch by skan as it has been LGTMed, and
continuing to iterate on the review is simply slowing us down at this point.
We can and will continue to iterate in tree.
Patch By: skan
Differential Revision: https://reviews.llvm.org/D70157
(This commit restores the original branch (4272372c57) and applies an
additional change dropped from the original in a bad merge. This change
should address the previous bot failures. Both changes reviewed by pete.)
Summary:
This commit builds upon Derek Schuff's 2014 commit for attaching labels to
existing fragments ( Diff Revision: http://reviews.llvm.org/D5915 )
When temporary labels appear ahead of a fragment, MCObjectStreamer will
track the temporary label symbol in a "Pending Labels" list. Labels are
associated with fragments when a real fragment arrives; otherwise, an empty
data fragment will be created if the streamer's section changes or if the
stream finishes.
This commit moves the "Pending Labels" list into each MCStream, so that
this label-fragment matching process is resilient to section changes. If
the streamer emits a label in a new section, switches to another section to
do other work, then switches back to the first section and emits a
fragment, that initial label will be associated with this new fragment.
Labels will only receive empty data fragments in the case where no other
fragment exists for that section.
The downstream effects of this can be seen in Mach-O relocations. The
previous approach could produce local section relocations and external
symbol relocations for the same data in an object file, and this mix of
relocation types resulted in problems in the ld64 Mach-O linker. This
commit ensures relocations triggered by temporary labels are consistent.
Reviewers: pete, ab, dschuff
Reviewed By: pete, dschuff
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71368
Summary:
This commit builds upon Derek Schuff's 2014 commit for attaching labels to
existing fragments ( Diff Revision: http://reviews.llvm.org/D5915 )
When temporary labels appear ahead of a fragment, MCObjectStreamer will
track the temporary label symbol in a "Pending Labels" list. Labels are
associated with fragments when a real fragment arrives; otherwise, an empty
data fragment will be created if the streamer's section changes or if the
stream finishes.
This commit moves the "Pending Labels" list into each MCStream, so that
this label-fragment matching process is resilient to section changes. If
the streamer emits a label in a new section, switches to another section to
do other work, then switches back to the first section and emits a
fragment, that initial label will be associated with this new fragment.
Labels will only receive empty data fragments in the case where no other
fragment exists for that section.
The downstream effects of this can be seen in Mach-O relocations. The
previous approach could produce local section relocations and external
symbol relocations for the same data in an object file, and this mix of
relocation types resulted in problems in the ld64 Mach-O linker. This
commit ensures relocations triggered by temporary labels are consistent.
Reviewers: pete, ab, dschuff
Reviewed By: pete, dschuff
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71368
D34393 added MCCodePadder as an infrastructure for padding code with
NOP instructions. It lacked tests and was not being worked on since
then.
Intel has now worked on an assembler patch to mitigate performance loss
after applying microcode update for the Jump Conditional Code Erratum.
https://www.intel.com/content/www/us/en/support/articles/000055650/processors.html
This new patch shares similarity with MCCodePadder, but has a concrete
use case in mind and is being actively developed. The infrastructure it
introduces can potentially be used for general performance improvement
via alignment. Delete the unused MCCodePadder so that people can develop
the new feature from a clean state.
Reviewed By: jyknight, skan
Differential Revision: https://reviews.llvm.org/D71106
In MCObjectStreamer, when there is no current fragment, initially
symbols are created in a "pending" state and assigned to a dummy
empty fragment.
Previously, they were not being assigned an offset, and thus
evaluateAbsolute would fail if trying to evaluate an expression 'a -
b', where both 'a' and 'b' were in this pending state.
Also slightly refactored the EmitLabel overload which takes an
MCFragment for clarity.
Fixes: https://llvm.org/PR41825
Differential Revision: https://reviews.llvm.org/D70062
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
llvm-svn: 369013
This patch removes hidden codegen flag -print-schedule effectively reverting the
logic originally committed as r300311
(https://llvm.org/viewvc/llvm-project?view=revision&revision=300311).
Flag -print-schedule was originally introduced by r300311 to address PR32216
(https://bugs.llvm.org/show_bug.cgi?id=32216). That bug was about adding "Better
testing of schedule model instruction latencies/throughputs".
These days, we can use llvm-mca to test scheduling models. So there is no longer
a need for flag -print-schedule in LLVM. The main use case for PR32216 is
now addressed by llvm-mca.
Flag -print-schedule is mainly used for debugging purposes, and it is only
actually used by x86 specific tests. We already have extensive (latency and
throughput) tests under "test/tools/llvm-mca" for X86 processor models. That
means, most (if not all) existing -print-schedule tests for X86 are redundant.
When flag -print-schedule was first added to LLVM, several files had to be
modified; a few APIs gained new arguments (see for example method
MCAsmStreamer::EmitInstruction), and MCSubtargetInfo/TargetSubtargetInfo gained
a couple of getSchedInfoStr() methods.
Method getSchedInfoStr() had to originally work for both MCInst and
MachineInstr. The original implmentation of getSchedInfoStr() introduced a
subtle layering violation (reported as PR37160 and then fixed/worked-around by
r330615).
In retrospect, that new API could have been designed more optimally. We can
always query MCSchedModel to get the latency and throughput. More importantly,
the "sched-info" string should not have been generated by the subtarget.
Note, r317782 fixed an issue where "print-schedule" didn't work very well in the
presence of inline assembly. That commit is also reverted by this change.
Differential Revision: https://reviews.llvm.org/D57244
llvm-svn: 353043
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
This was a pre-existing bug that could be triggered with assembly like
this:
.p2align 2
.LtmpN:
.cv_def_range "..."
I noticed this when attempting to change clang to emit aligned symbol
records.
llvm-svn: 349403