This header includes CodeGen headers, and is not, itself, included by
any Target headers, so move it into CodeGen to match the layering of its
implementation.
llvm-svn: 317647
rL312641 Allowed llvm.memcpy/memset/memmove to be tail calls when parent
function return the intrinsics's first argument. However on arm-none-eabi
platform, llvm.memcpy will be expanded to __aeabi_memcpy which doesn't
have return value. The fix is to check the libcall name after expansion
to match "memcpy/memset/memmove" before allowing those intrinsic to be
tail calls.
llvm-svn: 312799
function return the intrinsics's first argument.
llvm.memcpy/memset/memmove return void but they will return the first
argument after they are expanded as libcalls. Now if the parent function
has any return value, llvm.memcpy cannot be turned into tail call after
expansion.
The patch is to handle that case in SelectionDAGBuilder so when caller
function return the same value as the first argument of llvm.memcpy,
tail call is allowed.
Differential Revision: https://reviews.llvm.org/D37406
llvm-svn: 312641
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
Summary:
This class is a list of AttributeSetNodes corresponding the function
prototype of a call or function declaration. This class used to be
called ParamAttrListPtr, then AttrListPtr, then AttributeSet. It is
typically accessed by parameter and return value index, so
"AttributeList" seems like a more intuitive name.
Rename AttributeSetImpl to AttributeListImpl to follow suit.
It's useful to rename this class so that we can rename AttributeSetNode
to AttributeSet later. AttributeSet is the set of attributes that apply
to a single function, argument, or return value.
Reviewers: sanjoy, javed.absar, chandlerc, pete
Reviewed By: pete
Subscribers: pete, jholewinski, arsenm, dschuff, mehdi_amini, jfb, nhaehnle, sbc100, void, llvm-commits
Differential Revision: https://reviews.llvm.org/D31102
llvm-svn: 298393
Use getReturnedArgOperand() instead of rolling our own. Note that it's
equivalent because there can only be one 'returned' operand.
The existing code was also incorrect: there already was awkward logic to
ignore callee/EH blocks, but operands can now also be operand bundles,
in which case we'll look for non-existent parameter attributes.
Unfortunately, this isn't observable in-tree, as it only crashes when
exercising the regular call lowering logic with operand bundles.
Still, this is a nice small cleanup anyway.
llvm-svn: 290905
Recommitting r288293 with some extra fixes for GlobalISel code.
Most of the exception handling members in MachineModuleInfo is actually
per function data (talks about the "current function") so it is better
to keep it at the function instead of the module.
This is a necessary step to have machine module passes work properly.
Also:
- Rename TidyLandingPads() to tidyLandingPads()
- Use doxygen member groups instead of "//===- EH ---"... so it is clear
where a group ends.
- I had to add an ugly const_cast at two places in the AsmPrinter
because the available MachineFunction pointers are const, but the code
wants to call tidyLandingPads() in between
(markFunctionEnd()/endFunction()).
Differential Revision: https://reviews.llvm.org/D27227
llvm-svn: 288405
Most of the exception handling members in MachineModuleInfo is actually
per function data (talks about the "current function") so it is better
to keep it at the function instead of the module.
This is a necessary step to have machine module passes work properly.
Also:
- Rename TidyLandingPads() to tidyLandingPads()
- Use doxygen member groups instead of "//===- EH ---"... so it is clear
where a group ends.
- I had to add an ugly const_cast at two places in the AsmPrinter
because the available MachineFunction pointers are const, but the code
wants to call tidyLandingPads() in between
(markFunctionEnd()/endFunction()).
Differential Revision: https://reviews.llvm.org/D27227
llvm-svn: 288293
Summary:
Found when running Valgrind.
This removes two unnecessary assignments when using
AttrBuilder::removeAttribute.
AttrBuilder::removeAttribute returns a reference to the object.
As the LHSes were the same as the callees, the assignments
resulted in memcpy calls where dst = src.
Commited on behalf-of: dstenb (David Stenberg)
Reviewers: mkuper, rnk
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25460
llvm-svn: 285298
CGP tail-duplicates rets into blocks that end with a call that feed the ret.
This puts the call in tail position, potentially allowing the DAG builder to
lower it as a tail call. To avoid tail duplication in cases where we won't
form the tail call, CGP tried to predict whether this is going to be possible,
and avoids doing it when lowering as a tail call will definitely fail.
However, it was being too conservative by always throwing away calls to
functions with a signext/zeroext attribute on the return type.
Instead, we can use the same logic the builder uses to determine whether the
attributes work out.
Differential Revision: https://reviews.llvm.org/D24315
llvm-svn: 280894
After machine block placement, MBBs may not have terminators, and it is
appropriate to check for the end iterator here. We can fold the check
into the next if, as well. This look is really just looking for BBs that
end in CATCHRET.
llvm-svn: 278350
Check for an end iterator from MachineBasicBlock::getFirstTerminator in
llvm::getFuncletMembership. If this is turned into an assertion, it
fires in 48 X86 testcases (for example,
CodeGen/X86/regalloc-spill-at-ehpad.ll).
Since this is likely a latent bug (shouldn't all basic blocks end with a
terminator?) I've filed PR28938.
llvm-svn: 278344
If a local_unnamed_addr attribute is attached to a global, the address
is known to be insignificant within the module. It is distinct from the
existing unnamed_addr attribute in that it only describes a local property
of the module rather than a global property of the symbol.
This attribute is intended to be used by the code generator and LTO to allow
the linker to decide whether the global needs to be in the symbol table. It is
possible to exclude a global from the symbol table if three things are true:
- This attribute is present on every instance of the global (which means that
the normal rule that the global must have a unique address can be broken without
being observable by the program by performing comparisons against the global's
address)
- The global has linkonce_odr linkage (which means that each linkage unit must have
its own copy of the global if it requires one, and the copy in each linkage unit
must be the same)
- It is a constant or a function (which means that the program cannot observe that
the unique-address rule has been broken by writing to the global)
Although this attribute could in principle be computed from the module
contents, LTO clients (i.e. linkers) will normally need to be able to compute
this property as part of symbol resolution, and it would be inefficient to
materialize every module just to compute it.
See:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160509/356401.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160516/356738.html
for earlier discussion.
Part of the fix for PR27553.
Differential Revision: http://reviews.llvm.org/D20348
llvm-svn: 272709
This means that LTO_SYMBOL_SCOPE_DEFAULT_CAN_BE_HIDDEN will not be set
in a few cases.
This should have no impact in ld64 since it doesn't use lazy loading
when merging modules and that is when it checks
LTO_SYMBOL_SCOPE_DEFAULT_CAN_BE_HIDDEN.
llvm-svn: 257915
Remove a few more implicit ilist iterator conversions, this time from
Analysis.cpp and BranchFolding.cpp.
I added a few overloads for `remove()` and `erase()`, which quite
naturally take pointers as well as iterators as parameters. This will
reduce the churn at least in the short term, but I don't really have a
problem with these existing for longer.
llvm-svn: 249867
The CATCHRET operand did not match the MachineFunction's CFG. This
mismatch happened because FrameLowering created a new MachineBasicBlock
and updated the CFG but forgot to update the CATCHRET operand.
Let's make sure this doesn't happen again by strengthing the funclet
membership analysis: it can now reason about the membership of all basic
blocks, not just those inside of funclets.
llvm-svn: 249344
Track which basic blocks belong to which funclets. Permit branch
folding to fire but only if it can prove that doing so will not cause
code in one funclet to be reused in another.
llvm-svn: 249257
This reverts isSafeToSpeculativelyExecute's use of ReadNone until we
split ReadNone into two pieces: one attribute which reasons about how
the function reasons about memory and another attribute which determines
how it may be speculated, CSE'd, trap, etc.
llvm-svn: 246331
A readnone tailcall may still have a chain of computation which follows
it that would invalidate a tailcall lowering. Don't skip the analysis
in such cases.
This fixes PR24613.
llvm-svn: 246304
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, ted, yaron.keren, rafael, llvm-commits
Differential Revision: http://reviews.llvm.org/D11028
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241775
Summary:
Avoid using the TargetMachine owned DataLayout and use the Module owned
one instead. This requires passing the DataLayout up the stack to
ComputeValueVTs().
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, yaron.keren, rafael, llvm-commits
Differential Revision: http://reviews.llvm.org/D11019
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241773
It's quite possible to encounter an insertvalue instruction that's more deeply
nested than the value we're looking for, but when that happens we really
mustn't compare beyond the end of the index array.
Since I couldn't see any guarantees about what comparisons std::equal makes, we
probably need to directly check the size beforehand. In practice, I suspect
most std::equal implementations would probably bail early, which would be OK.
But just in case...
rdar://20834485
llvm-svn: 236635
When deciding whether a value comes from the aggregate or inserted value of an
insertvalue instruction, we compare the indices against those of the location
we're interested in. One of the lists needs reversing because the input data is
backwards (so that modifications take place at the end of the SmallVector), but
we were reversing both before leading to incorrect results.
Should fix PR23408
llvm-svn: 236457
All of the cases were just appending from random access iterators to a
vector. Using insert/append can grow the vector to the perfect size
directly and moves the growing out of the loop. No intended functionalty
change.
llvm-svn: 230845
When processing an array, every Elt has the same layout, it is
useless to recursively call each ComputeLinearIndex on each element.
Just do it once and multiply by the number of elements.
Differential Revision: http://reviews.llvm.org/D6832
llvm-svn: 225949
There is no need to pass on TLI separately to the function. As Eric pointed out
the Target Machine already provides everything we need.
llvm-svn: 213108
If the tail-callee and caller give the same bits via the same signext/zeroext
attribute then a tail-call should be allowed, since the extension has already
been done by the callee.
llvm-svn: 188159