Summary:
- Rename global / local naming convention that did not make much sense
to Visible / Invisible, where the visible refers to whether the ALLOCATE
call to the Fortran array is present in the current module or not.
- This match now works on both cross fortran module globals and on
parameters to functions since neither of them are necessarily allocated
at the point of their usage.
- Add testcase that matches against both a load and a store against
function parameters.
Differential Revision: https://reviews.llvm.org/D33190
llvm-svn: 303356
- This breaks the previous assumption that Fortran Arrays are `GlobalValue`.
- The names of functions were getting unwieldy. So, I renamed the
Fortran related functions.
Differential Revision: https://reviews.llvm.org/D33075
llvm-svn: 303040
- Move the testcases to ScopInfo/ since the processing takes place in
ScopBuilder.
- Cleanup testcases, run -polly-canonicalize on them, find minimal set
of opt parameters.
llvm-svn: 302886
Summary:
In case two arrays share base pointers in the same invariant load equivalence
class, we canonicalize all memory accesses to the first of these arrays
(according to their order in the equivalence class).
This enables us to optimize kernels such as boost::ublas by ensuring that
different references to the C array are interpreted as accesses to the same
array. Before this change the runtime alias check for ublas would fail, as it
would assume models of the C array with differing (but identically valued) base
pointers would reference distinct regions of memory whereas the referenced
memory regions were indeed identical.
As part of this change we remove most of the MemoryAccess::get*BaseAddr
interface. We removed already all references to get*BaseAddr in previous
commits to ensure that no code relies on matching base pointers between
memory accesses and scop arrays -- except for three remaining uses where we
need the original base pointer. We document for these situations that
MemoryAccess::getOriginalBaseAddr may return a base pointer that is distinct
to the base pointer of the scop array referenced by this memory access.
Reviewers: sebpop, Meinersbur, zinob, gareevroman, pollydev, huihuiz, efriedma, jdoerfert
Reviewed By: Meinersbur
Subscribers: etherzhhb
Tags: #polly
Differential Revision: https://reviews.llvm.org/D28518
llvm-svn: 302636
SCoPs with unfeasible runtime context are thrown away and therefore
do not need their uses verified.
The added test case requires a complexity limit to exceed.
Normally, error statements are removed from the SCoP and for that
reason are skipped during the verification. If there is a unfeasible
runtime context (here: because of the complexity limit being reached),
the removal of error statements and other SCoP construction steps are
skipped to not waste time. Error statements are not modeled in SCoPs
and therefore have no requirements on whether the scalars used in
them are available.
llvm-svn: 302234
Since r294891, in MemoryAccess::computeBoundsOnAccessRelation(), we skip
manually bounding the access relation in case the parameter of the load
instruction is already a wrapped set. Later on we assume that the lower
bound on the set is always smaller or equal to the upper bound on the
set. Bug 32715 manages to construct a sign wrapped set, in which case
the assertion does not necessarily hold. Fix this by handling a sign
wrapped set similar to a normal wrapped set, that is skipping the
computation.
Contributed-by: Maximilian Falkenstein <falkensm@student.ethz.ch>
Reviewers: grosser
Subscribers: pollydev, llvm-commits
Tags: #Polly
Differential Revision: https://reviews.llvm.org/D32893
llvm-svn: 302231
LLVM-IR names are commonly available in debug builds, but often not in release
builds. Hence, using LLVM-IR names to identify statements or memory reference
results makes the behavior of Polly depend on the compile mode. This is
undesirable. Hence, we now just number the statements instead of using LLVM-IR
names to identify them (this issue has previously been brought up by Zino
Benaissa).
However, as LLVM-IR names help in making test cases more readable, we add an
option '-polly-use-llvm-names' to still use LLVM-IR names. This flag is by
default set in the polly tests to make test cases more readable.
This change reduces the time in ScopInfo from 32 seconds to 2 seconds for the
following test case provided by Eli Friedman <efriedma@codeaurora.org> (already
used in one of the previous commits):
struct X { int x; };
void a();
#define SIG (int x, X **y, X **z)
typedef void (*fn)SIG;
#define FN { for (int i = 0; i < x; ++i) { (*y)[i].x += (*z)[i].x; } a(); }
#define FN5 FN FN FN FN FN
#define FN25 FN5 FN5 FN5 FN5
#define FN125 FN25 FN25 FN25 FN25 FN25
#define FN250 FN125 FN125
#define FN1250 FN250 FN250 FN250 FN250 FN250
void x SIG { FN1250 }
For a larger benchmark I have on-hand (10000 loops), this reduces the time for
running -polly-scops from 5 minutes to 4 minutes, a reduction by 20%.
The reason for this large speedup is that our previous use of printAsOperand
had a quadratic cost, as for each printed and unnamed operand the full function
was scanned to find the instruction number that identifies the operand.
We do not need to adjust the way memory reference ids are constructured, as
they do not use LLVM values.
Reviewed by: efriedma
Tags: #polly
Differential Revision: https://reviews.llvm.org/D32789
llvm-svn: 302072
This makes it easier to read and possibly even modify the test cases, as there
is no need to keep the variable increment in steps of one. More importantly, by
using explicit variable names we do not need to rely on the implicit numbering
of statements when dumping the scop information.
This makes it easier to read and possibly even modify the test cases.
Furthermore, by using explicit variables we do not need to rely on the implicit
numbering of statements when dumping the scop information. In a future commit,
this implicit numbering will likely not be used any more to refer to LLVM-IR
values as it is very expensive to construct.
llvm-svn: 301689
Trivial fix for two testcases. When Polly isn't linked into opt,
independent of whether it's built in-tree or not, these testcases forget
to load the appropriate library.
Contributed-by: Philip Pfaffe <philip.pfaffe@gmail.com>
Differential Revision: https://reviews.llvm.org/D31596
llvm-svn: 299357
In case LLVM pointers are annotated with !dereferencable attributes/metadata
or LLVM can look at the allocation from which a pointer is derived, we can know
that dereferencing pointers is safe and can be done unconditionally. We use this
information to proof certain pointers as save to hoist and then hoist them
unconditionally.
llvm-svn: 297375
Only when load-hoisted we can be sure the base pointer is invariant
during the SCoP's execution. Most of the time it would be added to
the required hoists for the alias checks anyway, except with
-polly-ignore-aliasing, -polly-use-runtime-alias-checks=0 or if
AliasAnalysis is already sure it doesn't alias with anything
(for instance if there is no other pointer to alias with).
Two more parts in Polly assume that this load-hoisting took place:
- setNewAccessRelation() which contains an assert which tests this.
- BlockGenerator which would use to the base ptr from the original
code if not load-hoisted (if the access expression is regenerated)
Differential Revision: https://reviews.llvm.org/D30694
llvm-svn: 297195
There is no point in optimizing unreachable code, hence our test cases should
always return.
This commit is part of a series that makes Polly more robust on the presence of
unreachables.
llvm-svn: 297158
These test cases should work in combination with
https://reviews.llvm.org/D12676, but became outdated over time. Update them
in preparation of discussions with Daniel Berlin on how to represent unreachable
in the post-dominator tree.
llvm-svn: 297157
There is no point in optimizing unreachable code, hence our test cases should
always return.
This commit is part of a series that makes Polly more robust on the presence of
unreachables.
llvm-svn: 297150
There is no point in optimizing unreachable code, hence our test cases should
always return.
This commit is part of a series that makes Polly more robust on the presence of
unreachables.
llvm-svn: 297147
r296992 made ScalarEvolution's CompareValueComplexity less aggressive,
and that broke the polly test being fixed in this change. This change
explicitly bumps CompareValueComplexity in said test case to make it
pass.
Can someone from the polly team please can give me an idea on if this
case is important enough to have
scalar-evolution-max-value-compare-depth be 3 by default?
llvm-svn: 296994
These loads cannot be savely hoisted as the condition guarding the
non-affine region cannot be duplicated to also protect the hoisted load
later on. Today they are dropped in ScopInfo. By checking for this early, we
do not even try to model them and possibly can still optimize smaller regions
not containing this specific required-invariant load.
llvm-svn: 296744
Multi-disjunct access maps can easily result in inbound assumptions which
explode in case of many memory accesses and many parameters. This change reduces
compilation time of some larger kernel from over 15 minutes to less than 16
seconds.
Interesting is the test case test/ScopInfo/multidim_param_in_subscript.ll
which has a memory access
[n] -> { Stmt_for_body3[i0, i1] -> MemRef_A[i0, -1 + n - i1] }
which requires folding, but where only a single disjunct remains. We can still
model this test case even when only using limited memory folding.
For people only reading commit messages, here the comment that explains what
memory folding is:
To recover memory accesses with array size parameters in the subscript
expression we post-process the delinearization results.
We would normally recover from an access A[exp0(i) * N + exp1(i)] into an
array A[][N] the 2D access A[exp0(i)][exp1(i)]. However, another valid
delinearization is A[exp0(i) - 1][exp1(i) + N] which - depending on the
range of exp1(i) - may be preferrable. Specifically, for cases where we
know exp1(i) is negative, we want to choose the latter expression.
As we commonly do not have any information about the range of exp1(i),
we do not choose one of the two options, but instead create a piecewise
access function that adds the (-1, N) offsets as soon as exp1(i) becomes
negative. For a 2D array such an access function is created by applying
the piecewise map:
[i,j] -> [i, j] : j >= 0
[i,j] -> [i-1, j+N] : j < 0
After this patch we generate only the first case, except for situations where
we can proove the first case to be invalid and can consequently select the
second without introducing disjuncts.
llvm-svn: 296679
Without this simplification for a loop nest:
void foo(long n1_a, long n1_b, long n1_c, long n1_d,
long p1_b, long p1_c, long p1_d,
float A_1[][p1_b][p1_c][p1_d]) {
for (long i = 0; i < n1_a; i++)
for (long j = 0; j < n1_b; j++)
for (long k = 0; k < n1_c; k++)
for (long l = 0; l < n1_d; l++)
A_1[i][j][k][l] += i + j + k + l;
}
the assumption:
n1_a <= 0 or (n1_a > 0 and n1_b <= 0) or
(n1_a > 0 and n1_b > 0 and n1_c <= 0) or
(n1_a > 0 and n1_b > 0 and n1_c > 0 and n1_d <= 0) or
(n1_a > 0 and n1_b > 0 and n1_c > 0 and n1_d > 0 and
p1_b >= n1_b and p1_c >= n1_c and p1_d >= n1_d)
is taken rather than the simpler assumption:
p9_b >= n9_b and p9_c >= n9_c and p9_d >= n9_d.
The former is less strict, as it allows arbitrary values of p1_* in case, the
loop is not executed at all. However, in practice these precise constraints
explode when combined across different accesses and loops. For now it seems
to make more sense to take less precise, but more scalable constraints by
default. In case we find a practical example where more precise constraints
are needed, we can think about allowing such precise constraints in specific
situations where they help.
This change speeds up the new test case from taking very long (waited at least
a minute, but it probably takes a lot more) to below a second.
llvm-svn: 296456
Instead of counting the number of read-only accesses, we now count the number of
distinct read-only array references when checking if a run-time alias check
may be too complex. The run-time alias check is quadratic in the number of
base pointers, not the number of accesses.
Before this change we accidentally skipped SPEC's lbm test case.
llvm-svn: 295567
Trying to fold such kind of dimensions will result in a division by zero,
which crashes the compiler. As such arrays are likely to invalidate the
scop anyhow (but are not illegal in LLVM-IR), there is no point in trying
to optimize the array layout. Hence, we just avoid the folding of
constant dimensions of size zero.
llvm-svn: 295415
Before this change wrapping range metadata resulted in exponential growth of
the context, which made context construction of large scops very slow. Instead,
we now just do not model the range information precisely, in case the number
of disjuncts in the context has already reached a certain limit.
llvm-svn: 295360
Commit r230230 introduced the use of range metadata to derive bounds for
parameters, instead of just looking at the type of the parameter. As part of
this commit support for wrapping ranges was added, where the lower bound of a
parameter is larger than the upper bound:
{ 255 < p || p < 0 }
However, at the same time, for wrapping ranges support for adding bounds given
by the size of the containing type has acidentally been dropped. As a result,
the range of the parameters was not guaranteed to be bounded any more. This
change makes sure we always add the bounds given by the size of the type and
then additionally add bounds based on signed wrapping, if available. For a
parameter p with a type size of 32 bit, the valid range is then:
{ -2147483648 <= p <= 2147483647 and (255 < p or p < 0) }
llvm-svn: 295349
When deriving the range of valid values of a scalar evolution expression might
be a range [12, 8), where the upper bound is smaller than the lower bound and
where the range is expected to possibly wrap around. We theoretically could
model such a range as a union of two non-wrapping ranges, but do not do this
as of yet. Instead, we just do not derive any bounds. Before this change,
we could have obtained bounds where the maximal possible value is strictly
smaller than the minimal possible value, which is incorrect and also caused
assertions during scop modeling.
llvm-svn: 294891
Before this change we created an additional reload in the copy of the incoming
block of a PHI node to reload the incoming value, even though the necessary
value has already been made available by the normally generated scalar loads.
In this change, we drop the code that generates this redundant reload and
instead just reuse the scalar value already available.
Besides making the generated code slightly cleaner, this change also makes sure
that scalar loads go through the normal logic, which means they can be remapped
(e.g. to array slots) and corresponding code is generated to load from the
remapped location. Without this change, the original scalar load at the
beginning of the non-affine region would have been remapped, but the redundant
scalar load would continue to load from the old PHI slot location.
It might be possible to further simplify the code in addOperandToPHI,
but this would not only mean to pull out getNewValue, but to also change the
insertion point update logic. As this did not work when trying it the first
time, this change is likely not trivial. To not introduce bugs last minute, we
postpone further simplications to a subsequent commit.
We also document the current behavior a little bit better.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D28892
llvm-svn: 292486
This allows us to delinearize code such as the one below, where the array
sizes are A[][2 * n] as there are n times two elements in the innermost
dimension. Alternatively, we could try to generate another dimension for the
struct in the innermost dimension, but as the struct has constant size,
recovering this dimension is easy.
struct com {
double Real;
double Img;
};
void foo(long n, struct com A[][n]) {
for (long i = 0; i < 100; i++)
for (long j = 0; j < 1000; j++)
A[i][j].Real += A[i][j].Img;
}
int main() {
struct com A[100][1000];
foo(1000, A);
llvm-svn: 288489
We now collect:
Number of total loops
Number of loops in scops
Number of scops
Number of scops with maximal loop depth 1
Number of scops with maximal loop depth 2
Number of scops with maximal loop depth 3
Number of scops with maximal loop depth 4
Number of scops with maximal loop depth 5
Number of scops with maximal loop depth 6 and larger
Number of loops in scops (profitable scops only)
Number of scops (profitable scops only)
Number of scops with maximal loop depth 1 (profitable scops only)
Number of scops with maximal loop depth 2 (profitable scops only)
Number of scops with maximal loop depth 3 (profitable scops only)
Number of scops with maximal loop depth 4 (profitable scops only)
Number of scops with maximal loop depth 5 (profitable scops only)
Number of scops with maximal loop depth 6 and larger (profitable scops only)
These statistics are certainly completely accurate as we might drop scops
when building up their polyhedral representation, but they should give a good
indication of the number of scops we detect.
llvm-svn: 287973
Our original statistics were added before we introduced a more fine-grained
diagnostic system, but the granularity of our statistics has never been
increased accordingly. This change introduces now one statistic counter per
diagnostic to enable us to collect fine-grained statistics about who certain
scops are not detected. In case coarser grained statistics are needed, the
user is expected to combine counters manually.
llvm-svn: 287968
Do not assume a load to be hoistable/invariant if the pointer is used by
another instruction in the SCoP that might write to memory and that is
always executed.
llvm-svn: 287272
The validity of a branch condition must be verified at the location of the
branch (the branch instruction), not the location of the icmp that is
used in the branch instruction. When verifying at the wrong location, we
may accept an icmp that is defined within a loop which itself dominates, but
does not contain the branch instruction. Such loops cannot be modeled as
we only introduce domain dimensions for surrounding loops. To address this
problem we change the scop detection to evaluate and verify SCEV expressions at
the right location.
This issue has been around since at least r179148 "scop detection: properly
instantiate SCEVs to the place where they are used", where we explicitly
set the scope to the wrong location. Before this commit the scope
was not explicitly set, which probably also resulted in the scope around the
ICmp to be choosen.
This resolves http://llvm.org/PR30989
Reported-by: Eli Friedman <efriedma@codeaurora.org>
llvm-svn: 286769
Assumptions can either be added for a given basic block, in which case the set
describing the assumptions is expected to match the dimensions of its domain.
In case no basic block is provided a parameter-only set is expected to describe
the assumption.
The piecewise expressions that are generated by the SCEVAffinator sometimes
have a zero-dimensional domain (e.g., [p] -> { [] : p <= -129 or p >= 128 }),
which looks similar to a parameter-only domain, but is still a set domain.
This change adds an assert that checks that we always pass parameter domains to
addAssumptions if BB is empty to make mismatches here fail early.
We also change visitTruncExpr to always convert to parameter sets, if BB is
null. This change resolves http://llvm.org/PR30941
Another alternative to this change would have been to inspect all code to make
sure we directly generate in the SCEV affinator parameter sets in case of empty
domains. However, this would likely complicate the code which combines parameter
and non-parameter domains when constructing a statement domain. We might still
consider doing this at some point, but as this likely requires several non-local
changes this should probably be done as a separate refactoring.
Reported-by: Eli Friedman <efriedma@codeaurora.org>
llvm-svn: 286444
When extracting constant expressions out of SCEVs, new parameters may be
introduced, which have not been registered before. This change scans
SCEV expressions after constant extraction again to make sure newly
introduced parameters are registered.
We may for example extract the constant '8' from the expression '((8 * ((%a *
%b) + %c)) + (-8 * %a))' and obtain the expression '(((-1 + %b) * %a) + %c)'.
The new expression has a new parameter '(-1 + %b) * %a)', which was not
registered before, but must be registered to not crash.
This closes http://llvm.org/PR30953
Reported-by: Eli Friedman <efriedma@codeaurora.org>
llvm-svn: 286430
We don't actually check whether a MemoryAccess is affine in very many
places, but one important one is in checks for aliasing.
Differential Revision: https://reviews.llvm.org/D25706
llvm-svn: 285746
When adding an llvm.memcpy instruction to AliasSetTracker, it uses the raw
source and target pointers which preserve bitcasts.
MemAccInst::getPointerOperand() also returns the raw target pointers, but
Scop::buildAliasGroups() did not for the source pointer. This lead to mismatches
between AliasSetTracker and ScopInfo on which pointer to use.
Fixed by also using raw pointers in Scop::buildAliasGroups().
llvm-svn: 285071
Integer math in LLVM IR is modular. Integer math in isl is
arbitrary-precision. Modeling LLVM IR math correctly in isl requires
either adding assumptions that math doesn't actually overflow, or
explicitly wrapping the math. However, expressions with the "nsw" flag
are special; we can pretend they're arbitrary-precision because it's
undefined behavior if the result wraps. SCEV expressions based on IR
instructions with an nsw flag also carry an nsw flag (roughly; actually,
the real rule is a bit more complicated, but the details don't matter
here).
Before this patch, SCEV flags were also overloaded with an additional
function: the ZExt code was mutating SCEV expressions as a hack to
indicate to checkForWrapping that we don't need to add assumptions to
the operand of a ZExt; it'll add explicit wrapping itself. This kind of
works... the problem is that if anything else ever touches that SCEV
expression, it'll get confused by the incorrect flags.
Instead, with this patch, we make the decision about whether to
explicitly wrap the math a bit earlier, basing the decision purely on
the SCEV expression itself, and not its users.
Differential Revision: https://reviews.llvm.org/D25287
llvm-svn: 284848
Update test after commit r284501:
[SCEV] Make CompareValueComplexity a little bit smarter
Contributed-by: Sanjoy Das <sanjoy@playingwithpointers.com>
llvm-svn: 284543
The test non_affine_loop_used_later.ll also tests the profability heuristic. Add
the option -polly-unprofitable-scalar-accs explicitely to ensure that the test
succeeds if the default value is changed.
llvm-svn: 284338
Under some conditions MK_Value read accessed where converted to MK_ExitPHI read
accessed. This is unexpected because MK_ExitPHI read accesses are implicit after
the scop execution. This behaviour was introduced in r265261, which fixed a
failed assertion/crash in CodeGen.
Instead, we fix this failure in CodeGen itself. createExitPHINodeMerges(),
despite its name, also handles accesses of kind MK_Value, only to skip them
because they access values that are usually not PHI nodes in the SCoP region's
exit block. Except in the situation observed in r265261.
Do not convert value accessed to ExitPHI accesses and do not handle
value accesses like ExitPHI accessed in CodeGen anymore.
llvm-svn: 284023
With this option one can disable the heuristic that assumes that statements with
a scalar write access cannot be profitably optimized. Such a statement instances
necessarily have WAW-dependences to itself. With DeLICM scalar accesses can be
changed to array accesses, which can avoid these WAW-dependence.
llvm-svn: 283233
ScopArrayInfo used to determine base pointer origins by looking up whether the
base pointer is a load. The "base pointer" for scalar accesses is the
llvm::Value being accessed. This is only a symbolic base pointer, it
represents the alloca variable (.s2a or .phiops) generated for it at code
generation.
This patch disables determining base pointer origin for scalars.
A test case where this caused a crash will be added in the next commit. In that
test SAI tried to get the origin base pointer that was only declared later,
therefore not existing. This is probably only possible for scalars used in
PHINode incoming blocks.
llvm-svn: 283232
The existing code would add the operands in the wrong order, and eventually
crash because the SCEV expression doesn't exactly match the parameter SCEV
expression in SCEVAffinator::visit. (SCEV doesn't sort the operands to
getMulExpr in general.)
Differential Revision: https://reviews.llvm.org/D23592
llvm-svn: 279087
Normally this is ensured when adding PHI nodes, but as PHI node dependences
do not need to be added in case all incoming blocks are within the same
non-affine region, this was missed.
This corrects an issue visible in LNT's sqlite3, in case invariant load hoisting
was disabled.
llvm-svn: 278792
This will make it easier to switch the default of Polly's invariant load
hoisting strategy and also makes it very clear that these test cases
indeed require invariant code hoisting to work.
llvm-svn: 278667
After having generated the code for a ScopStmt, we run a simple dead-code
elimination that drops all instructions that are known to be and remain unused.
Until this change, we only considered instructions for dead-code elimination, if
they have a corresponding instruction in the original BB that belongs to
ScopStmt. However, when generating code we do not only copy code from the BB
belonging to a ScopStmt, but also generate code for operands referenced from BB.
After this change, we now also considers code for dead code elimination, which
does not have a corresponding instruction in BB.
This fixes a bug in Polly-ACC where such dead-code referenced CPU code from
within a GPU kernel, which is possible as we do not guarantee that all variables
that are used in known-dead-code are moved to the GPU.
llvm-svn: 278103
This ensures that no trivially dead code is generated. This is not only cleaner,
but also avoids troubles in case code is generated in a separate function and
some of this dead code contains references to values that are not available.
This issue may happen, in case the memory access functions have been updated
and old getelementptr instructions remain in the code. With normal Polly,
a test case is difficult to draft, but the upcoming GPU code generation can
possibly trigger such problems. We will later extend this dead-code elimination
to region and vector statements.
llvm-svn: 276263
Check not only that the compiler is not crashing, but also whether the
probablematic part (The sequence of instructions simplified to '4') is reflected
in the output.
Thanks to Tobias for the hint.
llvm-svn: 275189
An assertion in visitSDivInstruction() checked whether the divisor is constant
by checking whether the argument is a ConstantInt. However, SCEVValidator allows
the divisor to be simplified to a constant by ScalarEvolution.
We synchronize the implementation of SCEVValidator and SCEVAffinator to both
accept simplified SCEV expressions.
llvm-svn: 275174
For llvm the memory accesses from nonaffine loops should be visible,
however for polly those nonaffine loops should be invisible/boxed.
This fixes llvm.org/PR28245
Cointributed-by: Huihui Zhang <huihuiz@codeaurora.org>
Differential Revision: http://reviews.llvm.org/D21591
llvm-svn: 274842
This patch adds a new function pass ScopInfoWrapperPass so that the
polyhedral description of a region, the SCoP, can be constructed and
used in a function pass.
Patch by Utpal Bora <cs14mtech11017@iith.ac.in>
Differential Revision: http://reviews.llvm.org/D20962
llvm-svn: 273856
IntToPtr and PtrToInt instructions are basically no-ops that we can handle as
such. In order to generate them properly as parameters we had to improve the
ScopExpander, though the change is the first in the direction of a more
aggressive scalar synthetization.
This patch was originally contributed by Johannes Doerfert in r271888, but was
in conflict with the revert in r272483. This is a recommit with some minor
adjustment to the test cases to take care of differing instruction names.
llvm-svn: 272485
The recent expression type changes still need more discussion, which will happen
on phabricator or on the mailing list. The precise list of commits reverted are:
- "Refactor division generation code"
- "[NFC] Generate runtime checks after the SCoP"
- "[FIX] Determine insertion point during SCEV expansion"
- "Look through IntToPtr & PtrToInt instructions"
- "Use minimal types for generated expressions"
- "Temporarily promote values to i64 again"
- "[NFC] Avoid unnecessary comparison for min/max expressions"
- "[Polly] Fix -Wunused-variable warnings (NFC)"
- "[NFC] Simplify min/max expression generation"
- "Simplify the type adjustment in the IslExprBuilder"
Some of them are just reverted as we would otherwise get conflicts. I will try
to re-commit them if possible.
llvm-svn: 272483
We now generate runtime checks __after__ the SCoP code generation and
not before, though they are still inserted at the same position int
the code. This allows to modify the runtime check during SCoP code
generation.
llvm-svn: 271894
IntToPtr and PtrToInt instructions are basically no-ops that we can handle as
such. In order to generate them properly as parameters we had to improve the
ScopExpander, though the change is the first in the direction of a more
aggressive scalar synthetization.
llvm-svn: 271888
We now use the minimal necessary bit width for the generated code. If
operations might overflow (add/sub/mul) we will try to adjust the types in
order to ensure a non-wrapping computation. If the type adjustment is not
possible, thus the necessary type is bigger than the type value of
--polly-max-expr-bit-width, we will use assumptions to verify the computation
will not wrap. However, for run-time checks we cannot build assumptions but
instead utilize overflow tracking intrinsics.
llvm-svn: 271878
Summary:
After rL271151 (SCEV change) SCEV no longer unconditionally transfers
nuw/nsw from the increment operation to the post-inc value; this
transfer only happens if there is undefined behavior in the program if
the increment overflowed (as opposed to just generating poison).
The loops in `wraping_signed_expr_1.ll` are in non-canonical
form (they're not rotated), and that defeats LLVM's poison-is-UB
analysis. IMO the easiest fix here is to run `wraping_signed_expr_1.ll`
through `-loop-rotate` to canonicalize the loops, which is what this
patch does.
Reviewers: jdoerfert, Meinersbur, grosser
Subscribers: grosser, mcrosier, pollydev
Differential Revision: http://reviews.llvm.org/D20778
llvm-svn: 271536
Before this patch we bailed if a required invariant load was potentially
overwritten. However, now we will optimistically assume it is actually
invariant and, to this end, restrict the valid parameter space as well as the
execution context with regards to potential overwrites of the location.
llvm-svn: 270416
So far we bailed if a required invariant load was potentially overwritten in
the SCoP. From now on we will optimistically assume it is actually invariant
and, to this end, restrict the valid parameter space.
llvm-svn: 270060
Truncate operations are basically modulo operations, thus we can model
them that way. However, for large types we assume the operand to fit
in the new type size instead of introducing a modulo with a very large
constant.
llvm-svn: 269300
If a profitable run is performed we will check if the SCoP seems to be
profitable after creation but before e.g., dependence are computed. This is
needed as SCoP detection only approximates the actual SCoP representation.
In the end this should allow us to be less conservative during the SCoP
detection while keeping the compile time in check.
llvm-svn: 269074
Regions with one affine loop can be profitable if the loop is
distributable. To this end we will allow them to be treated as
profitable if they contain at least two non-trivial basic blocks.
llvm-svn: 269064
The assumption attached to an llvm.assume in the SCoP needs to be
combined with the domain of the surrounding statement but can
nevertheless be used to refine the context.
This fixes the problems mentioned in PR27067.
llvm-svn: 269060
This patches makes the propagation of complexity problems during
domain generation consistent. Additionally, it makes it less likely to
encounter ill-formed domains later, e.g., during schedule generation.
llvm-svn: 269055
Before this patch we generated error-restrictions only for
error-blocks, thus blocks (or regions) containing a not represented
function call. However, the same reasoning is needed if the invalid
domain of a statement subsumes its actual domain. To this end we move
the generation of error-restrictions after the propagation of the
invalid domains. Consequently, error-statements are now defined more
general as statements that are assumed to be not executed.
Additionally, we do not record an empty domain for such statements but
a nullptr instead. This allows to distinguish between error-statements
and dead-statements.
llvm-svn: 269053
We now use context information to simplify the domains and access
functions of the SCoP instead of just aligning them with the parameter
space.
llvm-svn: 269048
After zero-extend operations and unsigned comparisons we now allow
unsigned divisions. The handling is basically the same as for signed
division, except the interpretation of the operands. As the divisor
has to be constant in both cases we can simply interpret it as an
unsigned value without additional complexity in the representation.
For the dividend we could choose from the different representation
schemes introduced for zero-extend operations but for now we will
simply use an assumption.
llvm-svn: 268032
It does not suffice to take a global assumptions for unsigned comparisons but
we also need to adjust the invalid domain of the statements guarded by such
an assumption. To this end we allow to specialize the getPwAff call now in
order to indicate unsigned interpretation.
llvm-svn: 268025
Assumptions and restrictions can both be simplified with the domain of a
statement but not the same way. After this patch we will correctly
distinguish them.
llvm-svn: 267885
With this patch we will optimistically assume that the result of an unsigned
comparison is the same as the result of the same comparison interpreted as
signed.
llvm-svn: 267559
Additive expressions can have constant factors too that we can extract
and thereby simplify the internal representation. For now we do
compute the gcd of all constant factors but only extract the same
(possibly negated) factor if there is one.
llvm-svn: 267445
Before, we checked all GEPs in a statement in order to derive
out-of-bound assumptions. However, this can not only introduce new
parameters but it is also not clear what we can learn from GEPs that
are not immediately used in a memory accesses inside the SCoP. As this
case is very rare, no actual change in the behaviour is expected.
llvm-svn: 267442
Before, assumptions derived from llvm.assume could reference new
parameters that were not known to the SCoP before. These were neither
beneficial to the representation nor to the user that reads the
emitted remark. Now we project them out and keep only user assumptions
on known parameters. Nevertheless, the new parameters are still part
of the SCoPs parameter space as the SCEVAffinator currently adds them
on demand.
llvm-svn: 267441
A zero-extended value can be interpreted as a piecewise defined signed
value. If the value was non-negative it stays the same, otherwise it
is the sum of the original value and 2^n where n is the bit-width of
the original (or operand) type. Examples:
zext i8 127 to i32 -> { [127] }
zext i8 -1 to i32 -> { [256 + (-1)] } = { [255] }
zext i8 %v to i32 -> [v] -> { [v] | v >= 0; [256 + v] | v < 0 }
However, LLVM/Scalar Evolution uses zero-extend (potentially lead by a
truncate) to represent some forms of modulo computation. The left-hand side
of the condition in the code below would result in the SCEV
"zext i1 <false, +, true>for.body" which is just another description
of the C expression "i & 1 != 0" or, equivalently, "i % 2 != 0".
for (i = 0; i < N; i++)
if (i & 1 != 0 /* == i % 2 */)
/* do something */
If we do not make the modulo explicit but only use the mechanism described
above we will get the very restrictive assumption "N < 3", because for all
values of N >= 3 the SCEVAddRecExpr operand of the zero-extend would wrap.
Alternatively, we can make the modulo in the operand explicit in the
resulting piecewise function and thereby avoid the assumption on N. For the
example this would result in the following piecewise affine function:
{ [i0] -> [(1)] : 2*floor((-1 + i0)/2) = -1 + i0;
[i0] -> [(0)] : 2*floor((i0)/2) = i0 }
To this end we can first determine if the (immediate) operand of the
zero-extend can wrap and, in case it might, we will use explicit modulo
semantic to compute the result instead of emitting non-wrapping assumptions.
Note that operands with large bit-widths are less likely to be negative
because it would result in a very large access offset or loop bound after the
zero-extend. To this end one can optimistically assume the operand to be
positive and avoid the piecewise definition if the bit-width is bigger than
some threshold (here MaxZextSmallBitWidth).
We choose to go with a hybrid solution of all modeling techniques described
above. For small bit-widths (up to MaxZextSmallBitWidth) we will model the
wrapping explicitly and use a piecewise defined function. However, if the
bit-width is bigger than MaxZextSmallBitWidth we will employ overflow
assumptions and assume the "former negative" piece will not exist.
llvm-svn: 267408
Memory accesses can have non-precisely modeled access functions that
would cause us to build incorrect execution context for hoisted loads.
This is the same issue that occurred during the domain construction for
statements and it is dealt with the same way.
llvm-svn: 267289
The SCEVAffinator will now produce not only the isl representaiton of
a SCEV but also the domain under which it is invalid. This is used to
record possible overflows that can happen in the statement domains in
the statements invalid domain. The result is that invalid loads have
an accurate execution contexts with regards to the validity of their
statements domain. While the SCEVAffinator currently is only taking
"no-wrapping" assumptions, we can add more withouth worrying about the
execution context of loads that are optimistically hoisted.
llvm-svn: 267288
As discussed in the Polly weekly phone call and reviews.llvm.org/D18878,
the assumed contexts changed (widen) due to D18878/r265942. Also check
these contexts in the tests affected by that change.
llvm-svn: 266323
Utilizing the record option for assumptions we can simplify the wrapping
assumption generation a lot. Additionally, we can now report locations
together with wrapping assumptions, though they might not be accurate yet.
llvm-svn: 266069
There are three reasons why we want to record assumptions first before we
add them to the assumed/invalid context:
1) If the SCoP is not profitable or otherwise invalid without the
assumed/invalid context we do not have to compute it.
2) Information about the context are gathered rather late in the SCoP
construction (basically after we know all parameters), thus the user
might see overly complicated assumptions to be taken while they would
have been simplified later on.
3) Currently we cannot take assumptions at any point but have to wait,
e.g., for the domain generation to finish. This makes wrapping
assumptions much more complicated as they need to be and it will
have a similar effect on "signed-unsigned" assumptions later.
llvm-svn: 266068
Collect the error domain contexts (formerly in the ErrorDomainCtxMap)
for each statement in the new InvalidContext member variable. While
this commit is basically a [NFC] it is a first step to make hoisting
sound by allowing a more fine grained record of invalid contexts,
e.g., here on statement level.
llvm-svn: 266053
Allow overflow of indices into the next higher dimension if it has
constant size. E.g.
float A[32][2];
((float*)A)[5];
is effectively the same as
A[2][1];
This can happen since r265379 as a side effect if ScopDetection
recognizes an access as affine, but ScopInfo rejects the GetElementPtr.
Differential Revision: http://reviews.llvm.org/D18878
llvm-svn: 265942
In r247147 we disabled pointer expressions because the IslExprBuilder did not
fully support them. This patch reintroduces them by simply treating them as
integers. The only special handling for pointers that is left detects the
comparison of two address_of operands and uses an unsigned compare.
llvm-svn: 265894
The way to get the elements size with getPrimitiveSizeInBits() is not
the same as used in other parts of Polly which should use
DataLayout::getTypeAllocSize(). Its use only queries the size of the
pointer and getPrimitiveSizeInBits returns 0 for types that require a
DataLayout object such as pointers.
Together with r265379, this should fix PR27195.
llvm-svn: 265795
If we build the domains for error blocks and later remove them we lose
the information that they are not executed. Thus, in the SCoP it looks
like the control will always reach the statement S:
for (i = 0 ... N)
if (*valid == 0)
doSth(&ptr);
S: A[i] = *ptr;
Consequently, we would have assumed "ptr" to be always accessed and
preloaded it unconditionally. However, only if "*valid != 0" we would
execute the optimized version of the SCoP. Nevertheless, we would have
hoisted and accessed "ptr"regardless of "*valid". This changes the
semantic of the program as the value of "*valid" can cause a change of
"ptr" and control if it is executed or not.
To fix this problem we adjust the execution context of hoisted loads
wrt. error domains. To this end we introduce an ErrorDomainCtxMap that
maps each basic block to the error context under which it might be
executed. Thus, to the context under which it is executed but an error
block would have been executed to. To fill this map one traversal of
the blocks in the SCoP suffices. During this traversal we do also
"remove" error statements and those that are only reachable via error
statements. This was previously done by the removeErrorBlockDomains
function which is therefor not needed anymore.
This fixes bug PR26683 and thereby several SPEC miscompiles.
Differential Revision: http://reviews.llvm.org/D18822
llvm-svn: 265778
If ScalarEvolution cannot look through some expression but we do, it
might happen that a multiplication will arrive at the
SCEVAffinator::visitMulExpr. While we could always try to improve the
extractConstantFactor function we might still miss something, thus we
reintroduce the code to generate multiplicative piecewise-affine
functions as a fall-back.
llvm-svn: 265777
If all exiting blocks of a SCoP are error blocks and therefor not
represented we will not generate accesses and consequently no SAI
objects for exit PHIs. However, they are needed in the code generation
to generate the merge PHIs between the original and optimized region.
With this patch we enusre that the SAI objects for exit PHIs exist
even if all exiting blocks turn out to be eror blocks.
This fixes the crash reported in PR27207.
llvm-svn: 265393
Even before we build the domain the branch condition can become very
complex, especially if we have to build the complement of a lot of
equality constraints. With this patch we bail if the branch condition
has a lot of basic sets and parameters.
After this patch we now successfully compile
External/SPEC/CINT2000/186_crafty/186_crafty
with "-polly-process-unprofitable -polly-position=before-vectorizer".
llvm-svn: 265286
As a CFG is often structured we can simplify the steps performed during
domain generation. When we push domain information we can utilize the
information from a block A to build the domain of a block B, if A dominates B
and there is no loop backede on a path from A to B. When we pull domain
information we can use information from a block A to build the domain of a
block B if B post-dominates A. This patch implements both ideas and thereby
simplifies domains that were not simplified by isl. For the FINAL basic block
in test/ScopInfo/complex-successor-structure-3.ll we used to build a universe
set with 81 basic sets. Now it actually is represented as universe set.
While the initial idea to utilize the graph structure depended on the
dominator and post-dominator tree we can use the available region
information as a coarse grained replacement. To this end we push the
region entry domain to the region exit and pull it from the region
entry for the region exit if applicable.
With this patch we now successfully compile
External/SPEC/CINT2006/400_perlbench/400_perlbench
and
SingleSource/Benchmarks/Adobe-C++/loop_unroll.
Differential Revision: http://reviews.llvm.org/D18450
llvm-svn: 265285
If a loop has no exiting blocks the region covering we use during
schedule genertion might not cover that loop properly. For now we bail
out as we would not optimize these loops anyway.
llvm-svn: 265280
If an exit PHI is written and also read in the SCoP we should not create two
SAI objects but only one. As the read is only modeled to ensure OpenMP code
generation knows about it we can simply use the EXIT_PHI MemoryKind for both
accesses.
llvm-svn: 265261
If a loop has no exiting blocks the region covering we use during
schedule genertion might not cover that loop properly. For now we bail
out as we would not optimize these loops anyway.
llvm-svn: 265260
These caused LNT failures due to new assertions when running with
-polly-position=before-vectorizer -polly-process-unprofitable for:
FAIL: clamscan.compile_time
FAIL: cjpeg.compile_time
FAIL: consumer-jpeg.compile_time
FAIL: shapes.compile_time
FAIL: clamscan.execution_time
FAIL: cjpeg.execution_time
FAIL: consumer-jpeg.execution_time
FAIL: shapes.execution_time
The failures have been introduced by r264782, but r264789 had to be reverted
as it depended on the earlier patch.
llvm-svn: 264885
As a CFG is often structured we can simplify the steps performed
during domain generation. When we push domain information we can
utilize the information from a block A to build the domain of a
block B, if A dominates B. When we pull domain information we can
use information from a block A to build the domain of a block B
if B post-dominates A. This patch implements both ideas and thereby
simplifies domains that were not simplified by isl. For the FINAL
basic block in
test/ScopInfo/complex-successor-structure-3.ll .
we used to build a universe set with 81 basic sets. Now it actually is
represented as universe set.
While the initial idea to utilize the graph structure depended on the
dominator and post-dominator tree we can use the available region
information as a coarse grained replacement. To this end we push the
region entry domain to the region exit and pull it from the region
entry for the region exit.
Differential Revision: http://reviews.llvm.org/D18450
llvm-svn: 264789
This patch applies the restrictions on the number of domain conjuncts
also to the domain parts of piecewise affine expressions we generate.
To this end the wording is change slightly. It was needed to support
complex additions featuring zext-instructions but it also fixes PR27045.
lnt profitable runs reports only little changes that might be noise:
Compile Time:
Polybench/[...]/2mm +4.34%
SingleSource/[...]/stepanov_container -2.43%
Execution Time:
External/[...]/186_crafty -2.32%
External/[...]/188_ammp -1.89%
External/[...]/473_astar -1.87%
llvm-svn: 264514
This fixes PR27035. While we now exclude MemIntrinsics from the
polyhedral model if they would access "null" we could exploit this
even more, e.g., remove all parameter combinations that would lead to
the execution of this statement from the context.
llvm-svn: 264284
This might be useful to evaluate the benefit of us handling modref funciton
calls. Also, a new bug that was triggered by modref function calls was
recently reported http://llvm.org/PR27035. To ensure the same issue does not
cause troubles for other people, we temporarily disable this until the bug
is resolved.
llvm-svn: 264140
ISL can conclude additional conditions on parameters from restrictions
on loop variables. Such conditions persist when leaving the loop and the
loop variable is projected out. This results in a narrower domain for
exiting the loop than entering it and is logically impossible for
non-infinite loops.
We fix this by not adding a lower bound i>=0 when constructing BB
domains, but defer it to when also the upper bound it computed, which
was done redundantly even before this patch.
This reduces the number of LNT fails with -polly-process-unprofitable
-polly-position=before-vectorizer from 8 to 6.
llvm-svn: 264118
We bail out if current scop has a complex control flow as this could lead to
building of large domain conditions. This is to reduce compile time. This
addresses r26382.
Contributed-by: Chris Jenneisch <chrisj@codeaurora.org>
Differential Revision: http://reviews.llvm.org/D18362
llvm-svn: 264105
Affine branches are fully modeled and regenerated from the polyhedral domain and
consequently do not require any input conditions to be propagated.
llvm-svn: 263678
This should fix PR19422.
Thanks to Jeremy Huddleston Sequoia for reporting this.
Thanks to Roman Gareev for his investigation and the reduced test case.
llvm-svn: 262612
In order to speed up compile time and to avoid random timeouts we now
separately track assumptions and restrictions. In this context
assumptions describe parameter valuations we need and restrictions
describe parameter valuations we do not allow. During AST generation
we create a runtime check for both, whereas the one for the
restrictions is negated before a conjunction is build.
Except the In-Bounds assumptions we currently only track restrictions.
Differential Revision: http://reviews.llvm.org/D17247
llvm-svn: 262328
Check the ModRefBehaviour of functions in order to decide whether or
not a call instruction might be acceptable.
Differential Revision: http://reviews.llvm.org/D5227
llvm-svn: 261866
From now on we bail only if a non-trivial alias group contains a non-affine
access, not when we discover aliasing and non-affine accesses are allowed.
llvm-svn: 261863
This patch adds support for memcpy, memset and memmove intrinsics. They are
represented as one (memset) or two (memcpy, memmove) memory accesses in the
polyhedral model. These accesses have an access range that describes the
summarized effect of the intrinsic, i.e.,
memset(&A[i], '$', N);
is represented as a write access from A[i] to A[i+N].
Differential Revision: http://reviews.llvm.org/D5226
llvm-svn: 261489
To support non-aligned accesses we introduce a virtual element size
for arrays that divides each access function used for this array. The
adjustment of the access function based on the element size of the
array was therefore moved after this virtual element size was
determined, thus after all accesses have been created.
Differential Revision: http://reviews.llvm.org/D17246
llvm-svn: 261226
So far we separated constant factors from multiplications, however,
only when they are at the outermost level of a parameter SCEV. Now,
we also separate constant factors from the parameter SCEV if the
outermost expression is a SCEVAddRecExpr. With the changes to the
SCEVAffinator we can now improve the extractConstantFactor(...)
function at will without worrying about any other code part. Thus,
if needed we can implement a more comprehensive
extractConstantFactor(...) function that will traverse the SCEV
instead of looking only at the outermost level.
Four test cases were affected. One did not change much and the other
three were simplified.
llvm-svn: 260859
We now distinguish invariant loads to the same memory location if they
have different types. This will cause us to pre-load an invariant
location once for each type that is used to access it. However, we can
thereby avoid invalid casting, especially if an array is accessed
though different typed/sized invariant loads.
This basically reverts the changes in r260023 but keeps the test
cases.
llvm-svn: 260045
We also disable this feature by default, as there are still some issues in
combination with invariant load hoisting that slipped through my initial
testing.
llvm-svn: 260025
Always use access-instruction pointer type to load the invariant values.
Otherwise mismatches between ScopArrayInfo element type and memory access
element type will result in invalid casts. These type mismatches are after
r259784 a lot more common and also arise with types of different size, which
have not been handled before.
Interestingly, this change actually simplifies the code, as we now have only
one code path that is always taken, rather then a standard code path for the
common case and a "fixup" code path that replaces the standard code path in
case of mismatching types.
llvm-svn: 260009