The compilation pipeline doesn't actually need to know about the high-level
concept of diagnostic mappings, and hiding the final computed level presents
several simplifications and other potential benefits.
The only exceptions are opportunistic checks to see whether expensive code
paths can be avoided for diagnostics that are guaranteed to be ignored at a
certain SourceLocation.
This commit formalizes that invariant by introducing and using
DiagnosticsEngine::isIgnored() in place of individual level checks throughout
lex, parse and sema.
llvm-svn: 211005
When using the VFS, we want the virtual header location when searching
for a framework module, since that will be the one in the correct
directory structure for the module.
I'll add a regression test once I finish reducing the larger one I have.
llvm-svn: 208901
To differentiate between two modules with the same name, we will
consider the path the module map file that they are defined by* part of
the ‘key’ for looking up the precompiled module (pcm file).
Specifically, this patch renames the precompiled module (pcm) files from
cache-path/<module hash>/Foo.pcm
to
cache-path/<module hash>/Foo-<hash of module map path>.pcm
In addition, I’ve taught the ASTReader to re-resolve the names of
imported modules during module loading so that if the header search
context changes between when a module was originally built and when it
is loaded we can rebuild it if necessary. For example, if module A
imports module B
first time:
clang -I /path/to/A -I /path/to/B ...
second time:
clang -I /path/to/A -I /different/path/to/B ...
will now rebuild A as expected.
* in the case of inferred modules, we use the module map file that
allowed the inference, not the __inferred_module.map file, since the
inferred file path is the same for every inferred module.
llvm-svn: 206201
We were 'allowing' the following import
@import Sub;
where Sub is a subframework of Foo and we had a -F path inside
Foo.framework/Frameworks and no module map file for Sub. This would
later hit assertion failures in debug builds.
Now we should correctly diagnose this as a module not found error.
llvm-svn: 204368
This name, while more verbose, plays more nicely with tools that use
file extensions to determine file types. The existing spelling
'module.map' will continue to work, but the new spelling will take
precedence.
In frameworks, this new filename will only go in a new 'Modules'
sub-directory.
Similarly, add a module.private.modulemap corresponding to
module_private.map.
llvm-svn: 204261
When building an AST file, we don't want to output HeaderFileInfo
structures for files that are not actually used as headers in the
current context. This can lead to assuming that unrelated files have
include counts of 0, defeating multiple-include prevention.
This is accomplished by adding an IsValid bit to the HFI.
llvm-svn: 203813
This makes Clang and LLVM -Wmsvc-include clean.
I believe the correct behavior here is to avoid updating the cache when
we find the header via MSVC's search rules.
Differential Revision: http://llvm-reviews.chandlerc.com/D2733
llvm-svn: 201615
continue header lookup using the framework include as filename.
This allows us to conveniently treat
#import "Foo.h"
as an implicit module import if we can resolve "Foo/Foo.h" as such.
rdar://16042979
llvm-svn: 201419
encodes the canonical rules for LLVM's style. I noticed this had drifted
quite a bit when cleaning up LLVM, so wanted to clean up Clang as well.
llvm-svn: 198686
Instead, mark the module as unavailable so that clang errors as soon as
someone tries to build this module.
This works towards the long-term goal of not stat'ing the header files at all
while reading the module map and instead read them only when the module is
being built (there is a corresponding FIXME in parseHeaderDecl()). However, it
seems non-trivial to get there and this unblock us and moves us into the right
direction.
Also changed the implementation to reuse the same DiagnosticsEngine.
llvm-svn: 197485
Instead, mark the module as unavailable so that clang errors as soon as
someone tries to build this module.
A better long-term strategy might be to not stat the header files at all
while reading the module map and instead read them only when the module
is being built (there is a corresponding FIXME in parseHeaderDecl()).
However, it seems non-trivial to get there and this would be a temporary
solution to unblock us.
Also changed the implementation to reuse the same DiagnosticsEngine as
otherwise warnings can't be enabled or disabled with command-line flags.
llvm-svn: 197388
This allows using virtual file mappings on the original SourceManager to
map in virtual module.map files. Without this patch, the ModuleMap
search will find a module.map file (as the FileEntry exists in the
FileManager), but will be unable to get the content from the
SourceManager (as ModuleMap previously created its own SourceManager).
Two problems needed to be fixed which this patch exposed:
1. Storing the inferred module map
When writing out a module, the ASTWriter stores the names of the files
in the main source manager; when loading the AST again, the ASTReader
errs out if such a file is found missing, unless it is overridden.
Previously CompilerInstance's compileModule method would store the
inferred module map to a temporary file; the problem with this approach
is that now that the module map is handled by the main source manager,
the ASTWriter stores the name of the temporary module map as source to
the compilation; later, when the module is loaded, the temporary file
has already been deleted, which leads to a compilation error. This patch
changes the inferred module map to instead inject a virtual file into
the source manager. This both saves some disk IO, and works with how the
ASTWriter/ASTReader handle overridden source files.
2. Changing test input in test/Modules/Inputs/*
Now that the module map file is handled by the main source manager, the
VerifyDiagnosticConsumer will not ignore diagnostics created while
parsing the module map file. The module test test/Modules/renamed.m uses
-I test/Modules/Inputs and triggers recursive loading of all module maps
in test/Modules/Inputs, some of which had conflicting names, thus
leading errors while parsing the module maps. Those diagnostics already
occur on trunk, but before this patch they would not break the test, as
they were ignored by the VerifyDiagnosticConsumer. This patch thus
changes the module maps that have been recently introduced which broke
the invariant of compatible modules maps in test/Modules/Inputs.
llvm-svn: 193314
This patch changes two things:
a) Allow a header to be part of multiple modules. The reasoning is that
in existing codebases that have a module-like build system, the same
headers might be used in several build targets. Simple reasons might be
that they defined different classes that are declared in the same
header. Supporting a header as a part of multiple modules will make the
transistion easier for those cases. A later step in clang can then
determine whether the two modules are actually compatible and can be
merged and error out appropriately. The later check is similar to what
needs to be done for template specializations anyway.
b) Allow modules to be stored in a directory tree separate from the
headers they describe.
Review: http://llvm-reviews.chandlerc.com/D1951
llvm-svn: 193151
With this option, arbitrarily named module map files can be specified
to be loaded as required for headers in the respective (sub)directories.
This, together with the extern module declaration allows for specifying
module maps in a modular fashion without the need for files called
"module.map".
Among other things, this allows a directory to contain two modules that
are completely independent of one another.
Review: http://llvm-reviews.chandlerc.com/D1697.
llvm-svn: 191284
Review: http://llvm-reviews.chandlerc.com/D1546.
I have picked up this patch form Lawrence
(http://llvm-reviews.chandlerc.com/D1063) and did a few changes.
From the original change description (updated as appropriate):
This patch adds a check that ensures that modules only use modules they
have so declared. To this end, it adds a statement on intended module
use to the module.map grammar:
use module-id
A module can then only use headers from other modules if it 'uses' them.
This enforcement is off by default, but may be turned on with the new
option -fmodules-decluse.
When enforcing the module semantics, we also need to consider a source
file part of a module. This is achieved with a compiler option
-fmodule-name=<module-id>.
The compiler at present only applies restrictions to the module directly
being built.
llvm-svn: 191283
After r180934 we may initiate module map parsing for modules not related to the module what we are building,
make sure we ignore the header file info of headers from such modules.
First part of rdar://13840148
llvm-svn: 181489
In a module-enabled Cocoa PCH file, we spend a lot of time stat'ing the headers
in order to associate the FileEntries with their modules and support implicit
module import.
Use a more lazy scheme by enhancing HeaderInfoTable to store extra info about
the module that a header belongs to, and associate it with its module only when
there is a request for loading the header info for a particular file.
Part of rdar://13391765
llvm-svn: 176976
factor the realpath calls into FileManager::getCanonicalName() so we
can cache the results of this epically slow operation. 5% speedup on
my modules test, and realpath drops out of the profile.
llvm-svn: 173542
uncovered.
This required manually correcting all of the incorrect main-module
headers I could find, and running the new llvm/utils/sort_includes.py
script over the files.
I also manually added quite a few missing headers that were uncovered by
shuffling the order or moving headers up to be main-module-headers.
llvm-svn: 169237
allowing a module map to be placed one level above the '.framework'
directories to specify that all .frameworks within that directory can
be inferred as framework modules. One can also specifically exclude
frameworks known not to work.
This makes explicit (and more restricted) behavior modules have had
"forever", where *any* .framework was assumed to be able to be built
as a module. That's not necessarily true, so we white-list directories
(with exclusions) when those directories have been audited.
llvm-svn: 167482
top-level frameworks can actually be symlinked over to embedded
frameworks, and accessed via the top-level framework's headers. In
this case, we need to determine that the framework was *actually* an
embedded framework, so we can load the appropriate top-level module.
llvm-svn: 164620