Summary:
Modified AffineMap::get to remove support for the overload which allowed
an ArrayRef of AffineExpr but no context (and gathered the context from a
presumed first entry, resulting in bugs when there were 0 results).
Instead, we support only a ArrayRef and a context, and a version which
takes a single AffineExpr.
Additionally, removed some now needless case logic which previously
special cased which call to AffineMap::get to use.
Reviewers: flaub, bondhugula, rriddle!, nicolasvasilache, ftynse, ulysseB, mravishankar, antiagainst, aartbik
Subscribers: mehdi_amini, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, bader, grosul1, frgossen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78226
This revision introduces a utility to unswitch affine.for/parallel loops
by hoisting affine.if operations past surrounding affine.for/parallel.
The hoisting works for both perfect/imperfect nests and in the presence
of else blocks. The hoisting is currently to as outermost a level as
possible. Uses a test pass to test the utility.
Add convenience method Operation::getParentWithTrait<Trait>.
Depends on D77487.
Differential Revision: https://reviews.llvm.org/D77870
Introduce mlir::applyOpPatternsAndFold which applies patterns as well as
any folding only on a specified op (in contrast to
applyPatternsAndFoldGreedily which applies patterns only on the regions
of an op isolated from above). The caller is made aware of the op being
folded away or erased.
Depends on D77485.
Differential Revision: https://reviews.llvm.org/D77487
NFC clean up for simplify-affine-structures test cases. Rename sets
better; avoid suffix numbers; move outlined definitions close to use.
This is in preparation for other functionality updates.
Differential Revision: https://reviews.llvm.org/D78017
Summary: Pass options are a better choice for various reasons and avoid the need for static constructors.
Differential Revision: https://reviews.llvm.org/D77707
Fix point-wise copy generation to work with bounds that have max/min.
Change structure of copy loop nest to use absolute loop indices and
subtracting base from the indexes of the fast buffers. Update supporting
utilities: Fix FlatAffineConstraints::getLowerAndUpperBound to look at
equalities as well and for a missing division. Update unionBoundingBox
to not discard common constraints (leads to a tighter system). Update
MemRefRegion::getConstantBoundingSizeAndShape to add memref dimension
constraints. Run removeTrivialRedundancy at the end of
MemRefRegion::compute. Run single iteration loop promotion and
load/store canonicalization after affine data copy (in its test pass as
well).
Differential Revision: https://reviews.llvm.org/D77320
Add a method that given an affine map returns another with just its unique
results. Use this to drop redundant bounds in max/min for affine.for. Update
affine.for's canonicalization pattern and createCanonicalizedForOp to use
this.
Differential Revision: https://reviews.llvm.org/D77237
Rewrite mlir::permuteLoops (affine loop permutation utility) to fix
incorrect approach. Avoiding using sinkLoops entirely - use single move
approach. Add test pass.
This fixes https://bugs.llvm.org/show_bug.cgi?id=45328
Depends on D77003.
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Differential Revision: https://reviews.llvm.org/D77004
This patch introduces a utility to separate full tiles from partial
tiles when tiling affine loop nests where trip counts are unknown or
where tile sizes don't divide trip counts. A conditional guard is
generated to separate out the full tile (with constant trip count loops)
into the then block of an 'affine.if' and the partial tile to the else
block. The separation allows the 'then' block (which has constant trip
count loops) to be optimized better subsequently: for eg. for
unroll-and-jam, register tiling, vectorization without leading to
cleanup code, or to offload to accelerators. Among techniques from the
literature, the if/else based separation leads to the most compact
cleanup code for multi-dimensional cases (because a single version is
used to model all partial tiles).
INPUT
affine.for %i0 = 0 to %M {
affine.for %i1 = 0 to %N {
"foo"() : () -> ()
}
}
OUTPUT AFTER TILING W/O SEPARATION
map0 = affine_map<(d0) -> (d0)>
map1 = affine_map<(d0)[s0] -> (d0 + 32, s0)>
affine.for %arg2 = 0 to %M step 32 {
affine.for %arg3 = 0 to %N step 32 {
affine.for %arg4 = #map0(%arg2) to min #map1(%arg2)[%M] {
affine.for %arg5 = #map0(%arg3) to min #map1(%arg3)[%N] {
"foo"() : () -> ()
}
}
}
}
OUTPUT AFTER TILING WITH SEPARATION
map0 = affine_map<(d0) -> (d0)>
map1 = affine_map<(d0) -> (d0 + 32)>
map2 = affine_map<(d0)[s0] -> (d0 + 32, s0)>
#set0 = affine_set<(d0, d1)[s0, s1] : (-d0 + s0 - 32 >= 0, -d1 + s1 - 32 >= 0)>
affine.for %arg2 = 0 to %M step 32 {
affine.for %arg3 = 0 to %N step 32 {
affine.if #set0(%arg2, %arg3)[%M, %N] {
// Full tile.
affine.for %arg4 = #map0(%arg2) to #map1(%arg2) {
affine.for %arg5 = #map0(%arg3) to #map1(%arg3) {
"foo"() : () -> ()
}
}
} else {
// Partial tile.
affine.for %arg4 = #map0(%arg2) to min #map2(%arg2)[%M] {
affine.for %arg5 = #map0(%arg3) to min #map2(%arg3)[%N] {
"foo"() : () -> ()
}
}
}
}
}
The separation is tested via a cmd line flag on the loop tiling pass.
The utility itself allows one to pass in any band of contiguously nested
loops, and can be used by other transforms/utilities. The current
implementation works for hyperrectangular loop nests.
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Differential Revision: https://reviews.llvm.org/D76700
- add method to get back an integer set from flat affine constraints;
this allows a round trip
- use this to complete the simplification of integer sets in
-simplify-affine-structures
- update FlatAffineConstraints::removeTrivialRedundancy to also do GCD
tightening and normalize by GCD (while still keeping it linear time).
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Move some of the affine transforms and their test cases to their
respective dialect directory. This patch does not complete the move, but
takes care of a good part.
Renames: prefix 'affine' to affine loop tiling cl options,
vectorize -> super-vectorize
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Differential Revision: https://reviews.llvm.org/D76565
Summary:
Change AffineOps Dialect structure to better group both IR and Tranforms. This included extracting transforms directly related to AffineOps. Also move AffineOps to Affine.
Differential Revision: https://reviews.llvm.org/D76161