NFC. Drop unnecessary use of OpBuilder in buildTripCountMapAndOperands.
Rename this to getTripCountMapAndOperands and remove stale comments.
Differential Revision: https://reviews.llvm.org/D110993
I guess this is why we should use unique_ptr as much as possible.
Also fix the InterfaceAttachmentTest.cpp test.
Differential Revision: https://reviews.llvm.org/D110984
Exposes mlir::TypeID to the C API as MlirTypeID along with various accessors
and helper functions.
Differential Revision: https://reviews.llvm.org/D110897
Tiling can create dim ops and those dim ops can take `InitTensorOp`
as input. Including it in the tiling canonicalization patterns
allows us to fold those dim ops away.
Also sorted the existing ops along the way.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D110876
The pooling ops are among the last remaining hard coded Linalg operations that have no region attached. They got obsolete due to the OpDSL pooling operations. Removing them allows us to delete specialized code and tests that are not needed for the OpDSL counterparts that rely on the standard code paths.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D110909
Add support for dynamic shared memory for GPU launch ops: add an
optional operand to gpu.launch and gpu.launch_func ops to specify the
amount of "dynamic" shared memory to use. Update lowerings to connect
this operand to the GPU runtime.
Differential Revision: https://reviews.llvm.org/D110800
This revision exposes some minimal funcitonality to allow comprehensive
bufferization to interop with external projects.
Differential Revision: https://reviews.llvm.org/D110875
For convolution, the input window dimension's access affine map
is of the form `(d0 * s0 + d1)`, where `d0`/`d1` is the output/
filter window dimension, and `s0` is the stride.
When tiling, https://reviews.llvm.org/D109267 changed how the
way dimensions are acquired. Instead of directly querying using
`*.dim` ops on the original convolution op, we now get it by
applying the access affine map to the loop upper bounds. This
is fine for dimensions having single-dimension affine maps,
like matmul, but not for convolution input. It will cause
incorrect compuation and out of bound. A concrete example, say
we have 1x225x225x3 (NHWC) input, 3x3x3x32 (HWCF) filter, and
1x112x112x3 (NHWC) output with stride 2, (112 * 2 + 3) would be
227, which is different from the correct input window dimension
size 225.
Instead, we should first calculate the max indices for each loop,
and apply the affine map to them, and then plus one to get the
dimension size. Note this makes no difference for matmul-like
ops given they will have `d0 - 1 + 1` effectively.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D110849
* This could have been removed some time ago as it only had one op left in it, which is redundant with the new approach.
* `matmul_i8_i8_i32` (the remaining op) can be trivially replaced by `matmul`, which natively supports mixed precision.
Differential Revision: https://reviews.llvm.org/D110792
Without this change, these attributes can only be accessed through the generic
operation attribute dictionary provided the caller knows the special operation
attribute names used for this purpose. Add some Python wrapping to support this
use case.
Also provide access to function arguments usable inside the function along with
a couple of quality-of-life improvements in using block arguments (function
arguments being the arguments of its entry block).
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D110758
The former is redundant because the later carries it as part of
its builder. Add a getContext() helper method to DialectAsmParser
to make this more convenient, and stop passing the context around
explicitly. This simplifies ODS generated parser hooks for attrs
and types.
This resolves PR51985
Recommit 4b32f8bac4 after fixing a dependency.
Differential Revision: https://reviews.llvm.org/D110796
This is (perhaps unintuitively) where the other AsmParser method
implementations are, which means that dialects don't generally need
to depend on MLIRParser directly. This should fix a build failure
building .so files on the mlir-nvidia builder.
The former is redundant because the later carries it as part of
its builder. Add a getContext() helper method to DialectAsmParser
to make this more convenient, and stop passing the context around
explicitly. This simplifies ODS generated parser hooks for attrs
and types.
This resolves PR51985
Differential Revision: https://reviews.llvm.org/D110796
Should have verified the perm length and input rank were the same before
inferring shape. Caused a crash with invalid IR.
Differential Revision: https://reviews.llvm.org/D110674
The lack of negi details leaked from merger class into codegen part.
Also, special case for vector code was not needed, the type can be used directly!
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D110677
Added interface implementations for AllocOp and CloneOp defined in the MemRef diallect.
Adapted the BufferDeallocation pass to be compatible with the interface introduced in this CL.
Differential Revision: https://reviews.llvm.org/D109350
This revision retires a good portion of the complexity of the codegen strategy and puts the logic behind pass logic.
Differential revision: https://reviews.llvm.org/D110678
We weren't retaining the ctypes closures that the ExecutionEngine was
calling back into, leading to mysterious errors.
Open to feedback about how to test this. And an extra pair of eyes to
make sure I caught all the places that need to be aware of this.
Differential Revision: https://reviews.llvm.org/D110661
Unroll-and-jam currently doesn't work when the loop being unroll-and-jammed
or any of its inner loops has iter_args. This patch modifies the
unroll-and-jam utility to support loops with iter_args.
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D110085
Adapt the signature of the PaddingValueComputationFunction callback to either return the padding value or failure to signal padding is not desired.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D110572
This revision makes sure that when the output buffer materializes locally
(in contrast with the passing in of output tensors either in-place or not
in-place), the zero initialization assumption is preserved. This also adds
a bit more documentation on our sparse kernel assumption (viz. TACO
assumptions).
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D110442
New mode option that allows for either running the default fusion kind that happens today or doing either of producer-consumer or sibling fusion. This will also be helpful to minimize the compile-time of the fusion tests.
Reviewed By: bondhugula, dcaballe
Differential Revision: https://reviews.llvm.org/D110102
The sparse constant provides a constant tensor in coordinate format. We first split the sparse constant into a constant tensor for indices and a constant tensor for values. We then generate a loop to fill a sparse tensor in coordinate format using the tensors for the indices and the values. Finally, we convert the sparse tensor in coordinate format to the destination sparse tensor format.
Add tests.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D110373
Let the calling pass or pattern replace the uses of the original root operation. Internally, the tileAndFuse still replaces uses and updates operands but only of newly created operations.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D110169
This revision adds a
```
FlatAffineValueConstraints(ValueRange ivs, ValueRange lbs, ValueRange ubs)
```
method and use it in hoist padding.
Differential Revision: https://reviews.llvm.org/D110427
This revision extracts padding hoisting in a new file and cleans it up in prevision of future improvements and extensions.
Differential Revision: https://reviews.llvm.org/D110414
When splitting with linalg.copy, cannot write into the destination alloc directly. Instead, write into a subview of the alloc.
Differential Revision: https://reviews.llvm.org/D110512
This patch adds functionality to FlatAffineConstraints to remove local
variables using equalities. This helps in keeping output representation of
FlatAffineConstraints smaller.
This patch is part of a series of patches aimed at generalizing affine
dependence analysis.
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D110056
For such cases, the type of the constant DenseElementsAttr is
different from the transpose op return type.
Reviewed By: rsuderman
Differential Revision: https://reviews.llvm.org/D110446
This patch introduces a generic reduction detection utility that works
across different dialecs. It is mostly a generalization of the reduction
detection algorithm in Affine. The reduction detection logic in Affine,
Linalg and SCFToOpenMP have been replaced with this new generic utility.
The utility takes some basic components of the potential reduction and
returns: 1) the reduced value, and 2) a list with the combiner operations.
The logic to match reductions involving multiple combiner operations disabled
until we can properly test it.
Reviewed By: ftynse, bondhugula, nicolasvasilache, pifon2a
Differential Revision: https://reviews.llvm.org/D110303
This has a few benefits:
* It allows for defining parsers/printer code blocks that
can be shared between operations and attribute/types.
* It removes the weird duplication of generic parser/printer hooks,
which means that newly added hooks only require touching one class.
Differential Revision: https://reviews.llvm.org/D110375
These are among the last operations still defined explicitly in C++. I've
tried to keep this commit as NFC as possible, but these ops
definitely need a non-NFC cleanup at some point.
Differential Revision: https://reviews.llvm.org/D110440
* If the input is a constant splat value, we just
need to reshape it.
* If the input is a general constant with one user,
we can also constant fold it, without bloating
the IR.
Reviewed By: rsuderman
Differential Revision: https://reviews.llvm.org/D110439