diagnostic callback mechanism, so all diagnostics now go through that
callback. Also, eliminate the displayDiagnostics flag to
clang_createIndex(), since it is no longer necessary: the client
determines whether to display diagnostics or not.
llvm-svn: 94714
clients can format diagnostics as they wish rather than having to
parse standard error. All of the important parts of the front end's
diagnostics are exposed: text, severity, location, source ranges, and
fix-its. The diagnostics callback is now available with
clang_createTranslationUnitFromSource() and
clang_createTranslationUnit().
As part of this change, CXSourceLocation and CXSourceRange got one
pointer larger, since we need to hold on to the SourceManager and
LangOptions structures in the source location. This is the minimum
amount of information needed for the functions that operate on source
locations and ranges (as implemented now). Previously we held on to
the ASTContext, but the diagnostics callback can end up with source
locations when there is no ASTContext (or preprocessor).
Still to do:
- Code completion needs to support the diagnostics callback, once we
have the ability to (de-)serialize diagnostics.
- Eliminate the "displayDiagnostics" argument to createIndex; we'll
always pass diagnostics to the callback and let it deal with display.
llvm-svn: 94709
strings than what we currently have in Sema. This is both an
experiment and a WIP.
The idea is simple: parse the format string incrementally,
constructing a well-structure representation of each format specifier.
Each format specifier is then handed back one-by-one to a client via a
callback. Malformed format strings are also handled with callbacks.
The idea is to separate the parsing of the format string from the
emission of diagnostics. Currently what we have in Sema for handling
format strings is a mongrel of both that is hard to follow and
difficult to modify (I can apply this label since I'm the original
author of that code).
This is in libAnalysis as it is reasonable generic and can potentially
be used both by libSema and libChecker.
Comments welcome.
llvm-svn: 94702
This was already being done in SSAUpdater::GetValueAtEndOfBlock so I've
just changed SSAUpdater to check for existing PHIs in both places.
llvm-svn: 94690
Modules and ModuleProviders. Because the "ModuleProvider" simply materializes
GlobalValues now, and doesn't provide modules, it's renamed to
"GVMaterializer". Code that used to need a ModuleProvider to materialize
Functions can now materialize the Functions directly. Functions no longer use a
magic linkage to record that they're materializable; they simply ask the
GVMaterializer.
Because the C ABI must never change, we can't remove LLVMModuleProviderRef or
the functions that refer to it. Instead, because Module now exposes the same
functionality ModuleProvider used to, we store a Module* in any
LLVMModuleProviderRef and translate in the wrapper methods. The bindings to
other languages still use the ModuleProvider concept. It would probably be
worth some time to update them to follow the C++ more closely, but I don't
intend to do it.
Fixes http://llvm.org/PR5737 and http://llvm.org/PR5735.
llvm-svn: 94686
even when -tailcallopt is not specified and it does not require changing ABI.
First case is the most trivial one. Perform tail call optimization when both
the caller and callee do not return values and when the callee does not take
any input arguments.
llvm-svn: 94664
reusable and modular API pieces.
Start by pulling the logic for deriving the Cocoa naming convention
into a separate API, header, and source file.
llvm-svn: 94662